Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing. The optical implementation of the fundamental building blocks of a digital computer, i.e. logic gates, has been investigated extensively in the past few decades. Optical logic gate computing is an alternative approach to various analogue optical computing architectures. In this paper, the latest development of optical logic gate computing with different kinds of implementations is reviewed. Firstly, the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced. And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field, semiconductor optical amplifiers (SOA), highly nonlinear fiber (HNLF), microscale and nanoscale waveguides, and photonic crystal structures is presented. To conclude, the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.
A surface plasmon resonance (SPR) temperature sensor on the basis of depressed double cladding fiber (DDCF) is theoretically proposed and experimentally demonstrated for the first time. Simulation analysis implies that the SPR fiber optic structure consisting of a multimode fiber (MMF) inserted into an 8 mm long DDCF is highly sensitive to the refractive index (RI) of the surrounding environment, owing to their mismatched cores, large discrepancy in cladding diameters, and the depressed inner cladding in DDCF. The experimental results further verify that the highest RI sensitivity is 7002 nm/RIU established with a 50nm Au coated DDCF-SPR sensor. Additionally, the temperature sensitivity reaches up to −2.27 nm/°C within a wide working temperature range of −30 to 330 °C by combining polydimethylsiloxane (PDMS) film as the temperature sensitive material with DDCF-Au architecture. The integrated PDMS, Au and DDCF temperature sensor possesses high performance in terms of sensing capability and physical construction, opening a route to their potential applications in other types of sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.