Rice (Oryza sativa L.) is an important cereal that provides food for more than half of the world's population. Besides grain yield, improving grain quality is also essential to rice breeders. Amylose content (AC), gelatinization temperature (GT) and gel consistency (GC) are considered to be three indicators for cooking and eating quality in rice. Using a genetic map of RILs derived from the super rice Liang-You-Pei-Jiu with high-density SNPs, we detected 3 QTLs for AC, 3 QTLs for GT, and 8 QTLs for GC on chromosomes 3, 4, 5, 6, 10, and 12. Wx locus, an important determinator for AC and GC, resided in one QTL cluster for AC and GC, qAC6 and qGC6 here. And a novel major QTL qGC10 on chromosome 10 was identified in both Lingshui and Hangzhou. With the BC 4 F 2 population derived from a CSSL harboring the segment for qGC10 from 93-11 in PA64s background, it was fine mapped between two molecular markers within 181 kb region with 27 annotated genes. Quantitative real-time PCR results showed that eight genes were differentially expressed in endosperm of two parents. After DNA sequencing, only LOC_Os10g04900, which encodes a F-box domain containing protein, has 2 bp deletion in the exon of PA64s, resulting in a premature stop codon. Therefore, LOC_Os10g04900 is considered to be the most likely candidate gene for qGC10 associated with gel consistency. Identification of qGC10 provides a new genetic resource for improvement of rice quality.
Background Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. Results In this study, an early senescence 2 ( es2 ) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. Conclusions The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.
Background Chloroplasts are essential for photosynthesis and play key roles in plant development. High temperature affects structure of chloroplasts and metabolism in plants. The seryl-tRNA synthetase plays an important role in translation of proteins. Although seryl-tRNA synthetase has been widely studied in microbes and animals, few studies have reported about its role in chloroplast development under high temperature in rice. Results In this study, we isolated a novel temperature - sensitive chlorophyll - deficient 11 ( tscd11 ) mutant by ethyl methane sulfonate (EMS) mutagenesis of japonica variety Wuyujing7. The tscd11 mutant developed albino leaves at the 3-leaf stage under high temperature (35 °C), but had normal green leaves under low temperature (25 °C). Consistent with the albino phenotype, impaired chloroplasts, decreased chlorophyll content and increased ROS accumulation were found in the tscd11 mutant at 35 °C. Fine mapping and DNA sequencing of tscd11 revealed a missense mutation (G to A) in the eighth exon of LOC_Os11g39670 resulted in amino acid change (Glu 374 to Lys 374 ). The TSCD11 gene encodes a seryl-tRNA synthetase localized to chloroplast. Complementation test confirmed that the point mutation in TSCD11 is responsible for the phenotype of tscd11 . TSCD11 is highly expressed in leaves. Compared with the wild type (WT), mutation in TSCD11 led to significant alteration in expression levels of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development under high temperature. Conclusions TSCD11 , encoding a seryl-tRNA synthetase localized to chloroplast, is vital to early chloroplast development at high temperature in rice, which help to further study on the molecular mechanism of chloroplast development under high temperature.
Chloroplasts are critical organelles for photosynthesis and play significant roles in plant growth and metabolism. High temperature is one of abiotic stresses affecting the growth and development of plants, involving chlorophyll biosynthesis and chloroplast development. It is well known that the methyl erythritol 4-phosphate (MEP) pathway is vital to photosynthesis and plant growth, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the enzyme that catalyze the first step of the MEP pathway. Although DXS has been widely studied in microbes and plants, no DXS gene has been identified in rice. Here, a novel thermo-sensitive chlorophyll-deficient 5 (tscd5) mutant was isolated in rice with decreased chlorophyll contents, impaired chloroplasts, and albino leaves at high temperature (35 °C). Fine mapping and DNA sequencing of TSCD5 found a missense mutation (G to A) in the sixth exon of LOC_Os05g33840 in tscd5. The TSCD5 gene encodes a 1-deoxy-D-xylulose-5-phosphate synthase 1 (OsDXS1) localized in chloroplast. Complementation tests and overexpression assay demonstrated that the mutation in LOC_Os05g33840 caused the tscd5 phenotype. qRT-PCR of TSCD5 showed it was constitutively expressed in all tissues, and its transcript amounts were reduced in tscd5 under high temperature. Here, TSCD5 is verified to be crucial to chloroplast development under high temperature in rice, which may facilitate the elucidation of the molecular mechanisms which underlie acclimation to high temperature stress in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.