Realizing durative flattened and dendrite‐free zinc (Zn) metal configuration is the key to resolving premature battery failure caused by the internal short circuit, which is highly determined by the crystal growth in the electrocrystallization process. Herein, we report that regulating the molecular structure of the inner Helmholtz plane (HIP) can effectively convert the deposition into activation control by weakening the solvated ion adsorption at the interface. The moderated electrochemical reaction kinetics lower than the adatom self‐diffusion rate steers conformal stratiform Zn growth and dominant Zn (0001) texture, achieving crystallographic optimization. Through in situ mediation of electrolyte engineering, orientational plating and stripping behaviors at edge‐sites and tailored solvation structure immensely improve the utilization efficiency and total charge passed of Zn metal, even under extreme conditions, including high areal capacity (3 mAh cm−2) and wide temperature range (−40–60 °C).
Realizing durative flattened and dendrite‐free zinc (Zn) metal configuration is the key to resolving premature battery failure caused by the internal short circuit, which is highly determined by the crystal growth in the electrocrystallization process. Herein, we report that regulating the molecular structure of the inner Helmholtz plane (HIP) can effectively convert the deposition into activation control by weakening the solvated ion adsorption at the interface. The moderated electrochemical reaction kinetics lower than the adatom self‐diffusion rate steers conformal stratiform Zn growth and dominant Zn (0001) texture, achieving crystallographic optimization. Through in situ mediation of electrolyte engineering, orientational plating and stripping behaviors at edge‐sites and tailored solvation structure immensely improve the utilization efficiency and total charge passed of Zn metal, even under extreme conditions, including high areal capacity (3 mAh cm−2) and wide temperature range (−40–60 °C).
The sustainable and scalable fabrication of low‐cost, efficient and durable electrocatalysts that operate well at industrial‐level current density is urgently needed for large‐scale implementation of the water splitting to produce hydrogen. In this work, an integrated carbon electrode is constructed by encapsulating Ni nanoparticles within N‐doped carbonized wood framework (Ni@NCW). Such integrated electrode with hierarchically porous structure facilitates mass transfer process for hydrogen evolution reaction (HER). Ni@NCW electrode can be employed directly as a robust electrocatalyst for HER, which affords the industrial‐level current density of 1000 mA cm−2 at low overpotential of 401 mV. The freestanding binder‐free electrode exhibits extraordinary stability for 100 h. An anion exchange membrane water electrolysis (AEMWE) electrolyzer assembled with such freestanding carbon electrode requires only a lower cell voltage of 2.43 V to achieve ampere‐level current of 4.0 A for hydrogen production without significant performance degradation. These advantages reveal the great potential of this strategy in designing cost‐effective freestanding electrode with monometallic, bimetallic or trimetallic species based on abundant natural wood resources for water splitting.This article is protected by copyright. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.