Background Inflammatory and immune responses triggered by brain ischemia worsen clinical outcomes of stroke and contribute to hemorrhagic transformation, massive edema and reperfusion injury associated with intravenous alteplase. We assessed whether a combination of the immune-modulator fingolimod and alteplase is safe and effective in attenuating reperfusion injury in patients with acute ischemic stroke (AIS) treated within the first 4.5 hours of symptom onset. Methods and Results In this multi-center trial, we randomly assigned 25 eligible patients with hemispheric ischemic stroke stemming from anterior or middle cerebral arterial occlusion to receive alteplase alone or 22 patients to receive alteplase plus oral fingolimod 0.5 mg daily for three consecutive days within 4.5 hours of the onset of ischemic stroke. Compared with patients who received alteplase alone or patients who received combination of fingolimod with alteplase exhibited lower circulating lymphocytes, smaller lesion volumes (10.1 vs 34.3 ml, P = 0.04), less hemorrhage (1.2 vs 4.4 ml, p = 0.01) and attenuated neurodeficits in National Institute of Health Stroke Scales (4 vs 2, P =0.02) at day 1. Furthermore, restrained lesion growth from day 1 to day 7 (−2.3 vs 12.1 ml, P < 0.01) with a better recovery at day 90 (modified Rankin Scale 0-1, 73% vs 32%, P < 0.01) was evident in patients given fingolimod and alteplase. No serious adverse events were recorded in all patients. Conclusions In this pilot study, combination therapy of fingolimod and alteplase was well tolerated, attenuated reperfusion injury and improved clinical outcomes in AIS patients. These findings need to be tested in further clinical trials.
Myasthenia gravis (MG) is a chronic humoral immunity-mediated autoimmune disorder of the neuromuscular junction characterized by muscle weakness. Follicular helper T (Tfh) cells may be the key Th cell subset that promotes MG development, as their major function is helping B cell activation and Ab production. Aberrance of thymus-derived Tfh cells might be implicated in autoimmune diseases including MG; just how circulating Tfh cells, especially those from patients with a normal thymus, contribute to MG pathogenesis remains to be uncovered. In this article, we characterize a population of circulating CD4(+)CXCR5(+)PD-1(+) Tfh cells in ocular and generalized MG patients without thymic abnormalities and demonstrate that the circulating Tfh cells are significantly enriched in generalized MG patients but not in ocular MG patients compared with healthy subjects, whereas a proportion of follicular regulatory T cells decreased in MG patients. In addition, the frequency of plasma cells and B cells was higher and the serum levels of IL-6/IL-21 were also elevated in these MG patients. The activated Tfh1 and Tfh17 in Tfh cells are the major source for IL-21 production in MG patients. A strong correlation between Tfh cells and the plasma cell frequency and anti-acetylcholine receptor Ab titers was evident in generalized MG patients. In particular, we found that Tfh cells derived from MG patients promoted B cells to produce Abs in an IL-21 signaling-dependent manner. Collectively, our results suggest that circulating Tfh cells may act on autoreactive B cells and thus contribute to the development of MG in patients without thymic abnormalities.
Noise equivalent count rate (NECR) and image noise are two different but related metrics that have been used to predict and assess image quality, respectively. The aim of this study is to investigate, using patient studies, the relationships between injected dose (ID), body mass index (BMI) and scanner type on NECR and image noise measurements in PET imaging. Two groups of 90 patients each were imaged on a GE DSTE and a DRX PET/CT scanner, respectively. The patients in each group were divided into nine subgroups according to three BMI (20-24.9, 25-29.9, 30-45 kg m(-2)) and three ID (296-444, 444-555, 555-740 MBq) ranges, resulting in ten patients/subgroup. All PET data were acquired in 3D mode and reconstructed using the VuePoint HD® fully 3D OSEM algorithm (2 iterations, 21(DRX) or 20 (DSTE) subsets). NECR and image noise measurements for bed positions covering the liver were calculated for each patient. NECR was calculated from the trues, randoms and scatter events recorded in the DICOM header of each patient study, while image noise was determined as the standard deviation of 50 non-neighboring voxels in the liver of each patient. A t-test compared the NECR and image noise for different scanners but with the same BMI and ID. An ANOVA test on the other hand was used to compare the results of patients with different BMI but the same ID and scanner type as well as different ID but the same BMI and scanner type. As expected the t-test showed a significant difference in NECR between the two scanners for all BMI and ID subgroups. However, contrary to what is expected no such findings were observed for image noise measurement. The ANOVA results showed a statistically significant difference in both NECR and image noise among the different BMI for each ID and scanner subgroup. However, there was no statistically significant difference in NECR and image noise across different ID for each BMI and scanner subgroup. Although the GE DRX PET/CT scanner has better count rate performance than the GE DSTE PET/CT scanner, this improvement does not translate to a lower image noise when using OSEM reconstruction. Our results show that patients with larger BMI consistently generate poorer image quality. Dose reduction from>555 to 296-444 MBq has minimal impact on image quality independent of the scanner used. A reduction in ID decreases patient and technologist exposure and can potentially reduce the overall cost of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.