Nitrification is an essential process for nutrient removal from wastewater and an important emission source of nitrous-oxide (N2O), which is a powerful greenhouse gas and a dominant ozone-depleting substance. In this study, nitrification and N2O emissions were tested in two weakly acidic (pH = 6.3–6.8) reactors: one with dissolved oxygen (DO) over 2.0 mg/L and the other with DO approximately 0.5 mg/L. Efficient nitrification was achieved in both reactors. Compared to the high-DO reactor, N2O emission in the low-DO reactor decreased slightly by 20% and had insignificant correlation with the fluctuations of DO (P = 0.935) and nitrite (P = 0.713), indicating that N2O might not be mainly produced via nitrifier denitrification. Based on qPCR, qFISH, functional gene amplicon and metagenome sequencing, it was found that complete ammonia oxidizer (comammox) Nitrospira significantly outnumbered canonical ammonia-oxidizing bacteria (AOB) in both weakly acidic reactors, especially in the low DO reactor with the comammox/AOB amoA gene ratio increasing from 6.6 to 17.1. Therefore, it was speculated that the enriched comammox was the primary cause for the slightly decreased N2O emission under long-term low DO in weakly acidic reactor. This study demonstrated that comammox Nitrospira can survive well under the weakly acidic and low-DO conditions, implying that achieving efficient nitrification with low N2O emission as well as low energy and alkalinity consumption is feasible for wastewater treatment.
Importance
Nitrification in wastewater treatment is an important process for eutrophication control and an emission source for greenhouse gas of N2O. The nitrifying process is usually operated at a slightly alkaline pH and high DO (>2 mg/L) to ensure efficient nitrification. However, it consumes a large amount of energy and chemicals especially for wastewater without sufficient alkalinity. This manuscript demonstrated that comammox can adapt well to the weakly acidic and low-DO bioreactors, with a result of efficient nitrification and low N2O emission. These findings indicate that comammox are significant for sustainable wastewater treatment, which provides an opportunity to achieve efficient nitrification with low N2O production as well as low energy and chemical consumption simultaneously.
Ammonia-oxidizing archaea (AOA) was previously considered the sole dominant ammonia oxidizer in acidic environments. This study, however, found that complete ammonia oxidation (comammox)
Nitrospira
was also a dominant ammonia oxidizer in the sediments of an acidic mine lake, which had an acidic pH < 5 and a high ammonium concentration of 175 mg-N/liter.
Biofilms in reactors usually grow on impermeable surfaces, and the mass transfer of nutrients in biofilms is mainly driven by diffusion, which is inefficient especially for thick biofilms. In this study, permeable materials (i.e., nylon meshes) were used as biocarriers in a biofilm reactor, and their performance was evaluated and compared with the commercial biocarriers (PE08 and PE10) used for treating slightly polluted water. The results indicate that the mesh-based bioreactor achieved complete nitrification faster than the commercial biocarriers, with a more stable and better effluent quality during long-term operation. At a two-hour hydraulic retention time, the average effluent ammonia (NH4+-N) and nitrite (NO2−-N) concentrations during the stabilized phase were 0.97 ± 0.79 and 0.61 ± 0.32 mg-N, respectively, which are significantly lower than those with commercial carriers. The estimated specific surface area activities for the mesh, PE08, and PE10 carriers were 1620, 769, and 1300 mg-N/(m2·d)), respectively. The biofilms formed on the nylon mesh were porous, while they were compact and nonporous on the PE carriers. Water with substrates might pass through the porous biofilms formed on the meshes, which could enhance mass transfer and result in a better and more stable treatment performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.