Er, Yb:CaF2 nanoparticles with different Yb concentrations were synthesized by a coprecipitation method using nitrates as raw materials. X‐ray powder diffraction and transmission electron microscopy analysis showed that the nanoparticles were single fluorite phase and the nanoparticle size was found to decrease with increasing Yb concentrations. The obtained nanoparticles were hot‐pressed at 800°C under 30 MPa under vacuum environment to fabricate Er, Yb:CaF2 transparent ceramics. The influence of Yb ion concentrations on the optical transmission, microstructure, and luminescence properties of Er, Yb:CaF2 transparent ceramics were investigated. The addition of Yb ions was found effectively to reduce grain size and has a positive effect on improving the optical transmission of Er, Yb:CaF2 transparent ceramics. The highest transmittance in the near‐infrared spectral region of the Er, Yb:CaF2 transparent ceramic reached about 90%. The green, red, and near‐infrared emission intensities were found to increase with increasing Yb concentration.
Pr3+, Gd3+ co‐doped SrF2 transparent ceramic, as the potential material for visible luminescent applications, was prepared by hot‐pressing of precursor nanopowders. The microstructure, phase compositions, and in‐line transmittance, as well as the photoluminescence properties were investigated systematically. Highly optical quality Pr,Gd:SrF2 transparent ceramic with nearly pore‐free microstructure was obtained at 800°C for 1.5 hours. The average in‐line transmittance of the x at.% Pr, 6 at.% Gd:SrF2 (x = 0.2, 0.5, 1.0, 2.0) transparent ceramics reached to 87.3 % in the infrared region. The photoluminescence spectra presented intense visible light emissions under the excitation of 444 nm, the main intrinsic emission bands located at 483 and 605 nm, which were attributed to the transitions of Pr3+: 3P0 → 3H4 and 1D2 → 3H4, respectively. With the co‐doping of Gd3+ ions, the emission intensity of the Pr:SrF2 transparent ceramic was greatly enhanced. All the emission bands of x at.% Pr, 6 at.% Gd:SrF2 transparent ceramics exhibited the highest luminescence intensity with the 1.0 at.% Pr3+ doping concentrations, whereas the lifetimes decreased dramatically with the Pr3+ doping contents increasing from 0.2 to 2.0 at.% due to its intense concentration quenching effect. The 1 at.% Pr, 6 at.% Gd:SrF2 transparent ceramic is a promising material for visible luminescent device applications.
A novel layered transparent Er:CaF 2 composite ceramic was proposed in the present study. Er:CaF 2 nanoparticles were synthesized by a chemical coprecipitation method. The crystal structures and morphologies of synthesized nanoparticles were performed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) measurements, respectively. Transparent composite ceramic was fabricated by the combination of multistep dry pressing and hot-pressed sintering method without any sintering aids or binders. The average grain size of 2% Er-doped and 5% Er-doped layers were about 30 and 55 μm, respectively. The thickness of interfacial between two different Er-doped layers was 150-200 μm. For a 1.5 mm thickness transparent Er:CaF 2 composite ceramic, the optical transmittance reached 44.9% at 500 nm and 53.6% at 1200 nm. The luminescence spectra and thermal conductivities of transparent ceramic specimens were also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.