BackgroundCysticercosis caused by the metacestode larval stage of Taenia hydatigena is a disease of veterinary and economic importance. A considerable level of genetic variation among isolates of different intermediate hosts and locations has been documented. Generally, data on the genetic population structure of T. hydatigena is scanty and lacking in Nigeria. Meanwhile, similar findings in other cestodes like Echinococcus spp. have been found to be of epidemiological importance. Our aim, therefore, was to characterize and compare the genetic diversity of T. hydatigena population in Nigeria based on three mitochondrial DNA markers as well as to assess the phylogenetic relationship with populations from other geographical regions.MethodsIn the present study, we described the genetic variation and diversity of T. hydatigena isolates from Nigerian sheep and goats using three full-length mitochondrial genes: the cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 1 (nad1), and NADH dehydrogenase subunit 5 (nad5).ResultsThe median-joining network of concatenated cox1-nad1-nad5 sequences indicated that T. hydatigena metacestodes of sheep origin were genetically distinct from those obtained in goats and this was supported by high FST values of nad1, cox1, and concatenated cox1-nad1-nad5 sequences. Genetic variation was also found to be higher in isolates from goats than from sheep.ConclusionsTo the best of our knowledge, the present study described the genetic variation of T. hydatigena population for the first time in Nigeria using full-length mitochondrial genes and suggests the existence of host-specific variants. The population indices of the different DNA markers suggest that analysis of long mitochondrial DNA fragments may provide more information on the molecular ecology of T. hydatigena. We recommend that future studies employ long mitochondrial DNA sequence in order to provide reliable data that would explain the extent of genetic variation in different hosts/locations and the biological and epidemiological significance.
The protease 3C is encoded by all known picornaviruses, and the structural features related to its protease and RNA-binding activities are conserved; these contribute to the cleavage of viral polyproteins and the assembly of the viral RNA replication complex during virus replication. Furthermore, 3C performs functions in the host cell through its interaction with host proteins. For instance, 3C has been shown to selectively ‘hijack’ host factors involved in gene expression, promoting picornavirus replication, and to inactivate key factors in innate immunity signaling pathways, inhibiting the production of interferon and inflammatory cytokines. Importantly, 3C maintains virus infection by subtly subverting host cell death and modifying critical molecules in host organelles. This Review focuses on the molecular mechanisms through which 3C mediates physiological processes involved in virus–host interaction, thus highlighting the picornavirus-mediated pathogenesis caused by 3C.
Background Taenia hydatigena, T. multiceps, T. pisiformis, and Dipylidium caninum are four common large and medium-sized tapeworms parasitizing the small intestine of dogs and other canids. These parasites cause serious impact on the health and development of livestock. However, there are, so far, no commercially available molecular diagnostic kits capable of simultaneously detecting all four parasites in dogs. The aim of the study was therefore to develop a multiplex PCR assay that will accurately detect all four cestode infections in one reaction. Methods Specific primers for a multiplex PCR were designed based on corresponding mitochondrial genome sequences, and its detection limit was assessed by serial dilutions of the genomic DNAs of tapeworms examined. Furthermore, field samples of dog feces were tested using the developed assay. Results A multiplex polymerase chain reaction (PCR) assay was developed based on mitochondrial DNA (mtDNA) that accurately and simultaneously identify four cestode species in one reaction using specific fragment sizes of 592, 385, 283, and 190 bp for T. hydatigena, T. multiceps, T. pisiformis, and D. caninum, respectively. The lowest DNA concentration detected was 1 ng for T. hydatigena, T. multiceps and T. pisiformis, and 0.1 ng for D. caninum in a 25 μl reaction system. This assay offers high potential for the rapid detection of these four tapeworms in host feces simultaneously. Conclusions This study provides an efficient tool for the simultaneous detection of T. hydatigena, T. multiceps, T. pisiformis, and D. caninum. The assay will be potentially useful in epidemiological studies, diagnosis, and treatment of these four cestodes infections during prevention and control program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.