The isothermal hot compression behavior of new Ti–Fe–B (named as TF400) alloy was investigated in the temperature range of 750–950 °C and strain rate range from 0.01 to 10 s−1 with the maximum height reduction of 60% by using a Gleeble 3800 thermal simulator. By considering the effect of strain via variable material parameters, a modified constitutive model was proposed to accurately predict the flow stress. The predicted results demonstrate that the flow stress decreases with the increase of temperature while it increases as the strain rate increases, in good agreement with the present experimental results. A mechanistic understanding of plastic deformation behavior in the TF400 alloys was developed by inspecting the microstructural characteristics prior to and after deformations. Dynamic recrystallization and dynamic transformation were found to be the dominant restoration mechanism during the hot deformation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.