[1] The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polar-orbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 μm and 12.01 μm, including 16 moderate resolution bands (M-bands) with a nominal spatial resolution of 750 m at nadir, five imaging resolution bands (I-bands) with a nominal spatial resolution of 375 m at nadir, and a day-night band (DNB) with a near-constant nominal 750 m spatial resolution throughout the scan. These bands are located in a visible and near-infrared focal plane assembly (FPA), a shortwave and midwave infrared FPA, and a long-wave infrared FPA. All bands, except the DNB, are coregistered for proper environmental data records retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational community's use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data are important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1300 m to within 75 m (20% I-band pixel size) and the second of which fine-tuned scan-angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band coregistration are also described.
Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.
Atmospheric motion vectors (AMVs), derived by tracking patterns, represent the winds in a layer characteristic of the pattern. AMV height (or pressure), important for applications in atmospheric research and operational meteorology, is usually assigned using observed IR brightness temperatures with a modeled atmosphere and can be inaccurate. Stereoscopic tracking provides a direct geometric height measurement of the pattern that an AMV represents. We extend our previous work with multi-angle imaging spectro–radiometer (MISR) and GOES to moderate resolution imaging spectroradiometer (MODIS) and the GOES-R series advanced baseline imager (ABI). MISR is a unique satellite instrument for stereoscopy with nine angular views along track, but its images have a narrow (380 km) swath and no thermal IR channels. MODIS provides a much wider (2330 km) swath and eight thermal IR channels that pair well with all but two ABI channels, offering a rich set of potential applications. Given the similarities between MODIS and VIIRS, our methods should also yield similar performance with VIIRS. Our methods, as enabled by advanced sensors like MODIS and ABI, require high-accuracy geographic registration in both systems but no synchronization of observations. AMVs are retrieved jointly with their heights from the disparities between triplets of ABI scenes and the paired MODIS granule. We validate our retrievals against MISR-GOES retrievals, operational GOES wind products, and by tracking clear-sky terrain. We demonstrate that the 3D-wind algorithm can produce high-quality AMV and height measurements for applications from the planetary boundary layer (PBL) to the upper troposphere, including cold-air outbreaks, wildfire smoke plumes, and hurricanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.