Abstract:The Geophysical Model Function (GMF) XMOD1 provides a linear algorithm for sea surface wind field retrievals for the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). However, the relationship between the normalized radar cross section (NRCS) and the sea surface wind speed, wind direction and incidence angles is non-linear. Therefore, in this paper, XMOD1 is revisited using the full dataset of X-SAR acquired over the ocean. We analyze the detailed relationship between the X-SAR NRCS, incidence angle and sea surface wind speed. Based on the C-band GMF CMOD_IFR2, an updated empirical retrieval model of the sea surface wind field called SIRX-MOD is derived. In situ buoy measurements and the scatterometer data of ERS-1/SCAT are used to validate the retrieved sea surface wind speeds from the X-SAR data with SIRX-MOD, which respectively yield biases of 0.13 m/s and 0.16 m/s and root mean square (RMS) errors of 1.83 m/s and 1.63 m/s.
The process of missile launch training was confined to the virtual scene in the past. So, cooperating with an artillery college, the group makes the moving target detection technology to be applied in missile training equipment, so as to make the training apply to the field operations. This paper presents the frame difference mapping algorithm, which is used to detect the moving target in the background of moving video frame. According to the target region which is given out by the system in the graphical interface, the students do the launching missile training. The moving target detection algorithm which is provided with the low complexity and the high accuracy, i.e. proposed by the paper, is based on Gauss mixture model and frame difference mapping. The mechanism of layered-graphics and the message agent which makes the modules in the system be independent of each other are used in the system designing. So, the module coupling degree in terms of this mechanism is lower than before. This mechanism brings convenience to system maintenance and upgrade, especially for the system’s transplanting to the real missile launch system in future.
South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.