The JUNO experiment locates in Jinji town, Kaiping city, Jiangmen city, Guangdong province. The geographic location is east longitude 112 • 31'05' and North latitude 22 • 07'05'. The experimental site is 43 km to the southwest of the Kaiping city, a county-level city in the prefecture-level city Jiangmen in Guangdong province. There are five big cities, Guangzhou, Hong Kong, Macau, Shenzhen, and Zhuhai, all in ∼200 km drive distance, as shown in figure 3.
We have studied the feasibility of doped eutectic SbTe alloys for practical application in digital video recording (DVR) rewritable phase-change media for high-numerical-aperture (NA=0.85) and blue-wavelength (λ=405 nm) recording. Remaining issues such as thermal cross-erase in land/groove recording and the thermal stability of recorded amorphous marks have been investigated and resolved. This work has resulted in the realisation of 22.5 GB phase-change media complying with the DVR blue format. The future of doped eutectic SbTe alloys in the phase-change recording-speed race is also promising, as the crystallisation speed and archival life stability can be optimised more or less independently by tuning the Sb/Te atomic ratio and adding Ge, respectively. We have demonstrated that a user data transfer rate of 70 Mbit/s (DVR double speed) is within reach using our current phase-change composition, and are expecting to realise data rates of over 100 Mbit/s in the near future.
CH 2 , and -CtCH) at the B3LYP/aug-cc-pVDZ level of theory. Geometry studies show that all of the compounds have a highly symmetric structure with a planar and rigid heteroring. Calculation results confirm that there exists considerable conjugation over the parent ring, which is an advantage to the stabilities of these compounds. Substituent effects on the geometry, electronic structure, conjugation, HOMO, and LUMO of the parent ring are discussed in detail. Vibrational frequency studies indicate that the parent ring has a characteristic frequency and the substitution of all of the substituents makes it shift to a lower wavenumber. Moreover, our study shows that some of our discussed compounds may be potential candidates for highenergy density materials (HEDMs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.