Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development.
The plant cuticle, which consists of cutin and waxes, forms a hydrophobic coating covering the aerial surfaces of all plants. It acts as an interface between plants and their surrounding environment whilst also protecting them against biotic and abiotic stresses. In this research, we have investigated the biodiversity and cuticle properties of aquatic plant duckweed, using samples isolated from four different locations around Hongze lake in Jiangsu province, China. The samples were genotyped using two chloroplast markers and nuclear ribosomal DNA markers, which revealed them as ecotypes of the larger duckweed, Spirodela polyrhiza. Duckweed cuticle properties were investigated by compositional analysis using Gas Chromatography coupled with Mass Spectroscopy (GC-MS) Flame Ionization Detector (GC-FID), and ultrastructural observation by cryo-Scanning Electron Microscopy (cryo-SEM). Cuticle compositional analysis indicated that fatty acids and primary alcohols, the two typical constituents found in many land plant cuticle, are the major duckweed wax components. A large portion of the duckweed wax fraction is composed of phytosterols, represented by campesterol, stigmasterol, sitosterol and their common precursor squalene. The cryo-SEM observation uncovered significant differences between the surface structures of the top air-facing and bottom water-facing sides of the plant fronds. The top side of the fronds, containing multiple stomata complexes, appeared to be represented by a rather flat waxy film sporadically covered with wax crystals. Underneath the waxy film was detected a barely distinguished nanoridge net, which became distinctly noticeable after chloroform treatment. On the bottom side of the fronds, the large epidermal cells were covered by the well-structured net, whose sections became narrower and sharper under cryo-SEM following chloroform treatment. These structural differences between the abaxial and adaxial sides of the fronds evidently relate to their distinct physiological roles in interacting with the contrasting environments of sunlight/air and nutrients/water. The unique structural and biochemical features of Spirodela frond surfaces with their rapid reproductive cycle and readily availability genome sequence, make duckweed an attractive monocot model for studying the fundamental processes related to plant protection against ultraviolet irradiation, pathogens and other environmental stresses.
Rice (Oryza sativa L.) MADS3 transcription factor regulates the homeostasis of reactive oxygen species (ROS) during late anther development, and one MADS3 mutant, mads3-4, has defective anther walls, aborted microspores and complete male sterility. Here, we report the untargeted metabolomic analysis of both wild type and mads3-4 mature anthers. Mutation of MADS3 led to an unbalanced redox status and caused oxidative stress that damages lipid, protein, and DNA. To cope with oxidative stress in mads3-4 anthers, soluble sugars were mobilized and carbohydrate metabolism was shifted to amino acid and nucleic acid metabolism to provide substrates for the biosynthesis of antioxidant proteins and the repair of DNA. Mutation of MADS3 also affected other aspects of rice anther development such as secondary metabolites associated with cuticle, cell wall, and auxin metabolism. Many of the discovered metabolic changes in mads3-4 anthers were corroborated with changes of expression levels of corresponding metabolic pathway genes. Altogether, this comparative metabolomic analysis indicated that MADS3 gene affects rice anther development far beyond the ROS homeostasis regulation.Keywords: Anther; ascorbate; cysteine/cysteine; glutathione/oxidized glutathione; Oryza. sativa L; secondary metabolism Citation: Qu G, Quan S, Mondol P, Xu J, Zhang D, Shi J (2014) Comparative metabolomic analysis of wild type and mads3 mutant rice anthers.
Elucidation of the metabolic pathways determining pigmentation and their underlying regulatory mechanisms in maize kernels is of high importance in attempts to improve the nutritional composition of our food. In this study, we compared dynamics in the transcriptome and metabolome between colored SW93 and white SW48 by integrating RNA-Seq and non-targeted metabolomics. Our data revealed that expression of enzyme coding genes and levels of primary metabolites decreased gradually from 11 to 21 DAP, corresponding well with the physiological change of developing maize kernels from differentiation through reserve accumulation to maturation, which was cultivar independent. A remarkable up-regulation of anthocyanin and phlobaphene pathway distinguished SW93 from SW48, in which anthocyanin regulating transcriptional factors (R1 and C1), enzyme encoding genes involved in both pathways and corresponding metabolic intermediates were up-regulated concurrently in SW93 but not in SW48. The shift from the shikimate pathway of primary metabolism to the flavonoid pathway of secondary metabolism, however, appears to be under posttranscriptional regulation. This study revealed the link between primary metabolism and kernel coloration, which facilitate further study to explore fundamental questions regarding the evolution of seed metabolic capabilities as well as their potential applications in maize improvement regarding both staple and functional foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.