Novel hydrogels with excellent mechanical properties have prompted applications in biomedical and other fields. The reported tough hydrogels are usually fabricated by complicated chemical and/or physical methods. To develop more facile fabrication methods is very important for the practical applications of tough hydrogels. We report a very simple yet novel method for fabricating tough hydrogels that are totally physically cross-linked by cooperative hydrogen bonding between a pre-existing polymer and an in situ polymerized polymer. In this work, tough hydrogels are prepared by heating aqueous acrylamide (AAm) solution in the presence of poly(Nvinylpyrrolidone) (PVP) but without any chemical initiators or covalent bonding cross-linking agents. Mechanical tests of the asprepared and swollen PVP-in situ-PAAm hydrogels show that they exhibit very high tensile strengths, high tensile extensibility, high compressive strengths, and low moduli. Comparative synthesis experiments, DSC characterization, and molecular modeling indicate that the formation of strong cooperative hydrogen bonding between the pre-existing PVP and the in situ formed PAAm chains contributes to the gel formation and the toughening of the hydrogels. The unique microstructure of the gels with evenly distributed flexible cross-linking sites and long polymer chains attached to them endow the hydrogels with an excellent mechanism of distributing the applied load.
Polymer hydrogels that are capable of spontaneously healing injury are being developed at a rapid pace because of their great potential in biomedical applications. Here, the self-healing property of tough graphene nanocomposite hydrogels fabricated by using graphene peroxide as polyfunctional initiating and cross-linking centers is reported. The hydrogels show excellent self-healing ability at ambient temperature or even lower temperatures for a short time and very high recovery degrees (up to 88% tensile strength) can be achieved at a prolonged healing time. The healed gels exhibit very high tensile strengths (up to 0.35 MPa) and extremely high elongations (up to 4900%). The strong interactions between the polyacrylamide chains and the graphene oxide sheets are essential to the mechanical strengths of the healed gels.
Rheology studies were performed on tough PVP-in situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding to understand their viscoelastic response and, hence, the interactions and microstructure. The viscoelasticity of the PVP-in situ-PAAm hydrogels was strongly affected by the monomer ratio (C AAm /C VP ). Hydrogels prepared with a high monomer ratio exhibited weak time, temperature and frequency dependence of the viscoelastic properties, similar to those of chemically cross-linked hydrogels. The storage modulus (G′) of the gels was much greater than the loss moduli (G″) and low loss factor (tan δ < ∼ 0.1), which indicated that they were solid-like, and mostly elastic. These supramolecular gels exhibited a strain-and C AAm /C VP -dependent reversible gel (solid) to viscoelastic liquid transition due to the dynamic nature of the cooperative hydrogen bonds. That transition also coincided with the onset of nonlinear viscoelastic behavior. The addition of a low molecular weight compound, urea, that competes for hydrogen bonding sites weakens the gel by decreasing the effective cross-link density or weakening the intermolecular hydrogen bonding.
Discovering fluorescence of existing compounds, which are generally regarded as non-fluorescent, is of important academic and technical significance. This article reports the fluorescence of common compounds containing pyrrolidone ring(s) and their oxidized hydrolyzates. Poly(N-vinylpyrrolidone) (PVP), polymerized from a very weak fluorescent monomer N-vinyl-2-pyrrolidone (NVP), exhibits strong intrinsic fluorescence. Moreover, the fluorescence of its "hydrolyzate" is dramatically enhanced by about 1000 times. The "hydrolyzate" of N-methyl-pyrrolidone (NMP) also exhibits significantly enhanced fluorescence. By studying the chemical structures and fluorescence of the hydrolyzates, the enhanced fluorescence is attributed to the formation of secondary amine oxide. The much stronger fluorescence of the polymers compared to the corresponding small molecular compounds is ascribed to the "aggregation-induced emission" (AIE) effect of the luminophores. PVP and its oxidized hydrolyzate also show some phenomena different to the common AIE effect. The fluorescence of PVP and its oxidized hydrolyzate shows stimuli response to metal ions and pH values. This study introduces novel fluorescent materials for various potential applications.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.