Abstract. If a physical object has a smooth or piecewise smooth boundary, its images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations are locally well approximated by affine transforms of the image plane.In consequence the solid object recognition problem has often been led back to the computation of affine invariant image local features. Such invariant features could be obtained by normalization methods, but no fully affine normalization method exists for the time being. Even scale invariance is only dealt with rigorously by the SIFT method. By simulating zooms out and normalizing translation and rotation, SIFT is invariant to four out of the six parameters of an affine transform.The method proposed in this paper, Affine-SIFT (ASIFT), simulates all image views obtainable by varying the two camera axis orientation parameters, namely the latitude and the longitude angles, left over by the SIFT method. Then it covers the other four parameters by using the SIFT method itself. The resulting method will be mathematically proved to be fully affine invariant. Against any prognosis, simulating all views depending on the two camera orientation parameters is feasible with no dramatic computational load. A two-resolution scheme further reduces the ASIFT complexity to about twice that of SIFT.A new notion, the transition tilt, measuring the amount of distortion from one view to another is introduced. While an absolute tilt from a frontal to a slanted view exceeding 6 is rare, much higher transition tilts are common when two slanted views of an object are compared (see Fig. 1.1). The attainable transition tilt is measured for each affine image comparison method. The new method permits to reliably identify features that have undergone transition tilts of large magnitude, up to 36 and higher. This fact is substantiated by many experiments which show that ASIFT outperforms significantly the state-of-the-art methods SIFT, MSER, Harris-Affine, and Hessian-Affine.
A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.
Abstract-We introduce a class of inverse problem estimators computed by mixing adaptively a family of linear estimators corresponding to different priors. Sparse mixing weights are calculated over blocks of coefficients in a frame providing a sparse signal representation. They minimize an norm taking into account the signal regularity in each block. Adaptive directional image interpolations are computed over a wavelet frame with an algorithm, providing state-of-the-art numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.