Abstract. We present the first a priori error analysis of the h-version of the hybridizable discontinuous Galkerin (HDG) methods applied to convection-dominated diffusion problems. We show that, when using polynomials of degree no greater than k, the L 2 -error of the scalar variable converges with order k + 1/2 on general conforming quasi-uniform simplicial meshes, just as for conventional DG methods. We also show that the method achieves the optimal L 2 -convergence order of k + 1 on special meshes. Moreover, we discuss a new way of implementing the HDG methods for which the spectral condition number of the global matrix is independent of the diffusion coefficient. Numerical experiments are presented which verify our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.