Significant progress has been made in EAST since last IAEA FEC on both technology and physics fronts, particularly towards high performance, long pulse plasma discharges. The following key results have been achieved under a strongly lithium coated wall condition: fully steady-state long pulse diverted plasma entirely driven by Lower Hybrid Current Drive (LHCD) over 400 s, and stationary H-mode discharges over 30s with a combination of LHCD and Ion Cyclotron Resonant Heating (ICRF). H-modes with various type of ELMs have been realized at an H factor of H IPB98(y,2) ranged from 0.7 to over unity, providing great opportunities for H-mode physics study. New and exciting physics with dominant RF heating has been emerged, such as new findings on LHCD-induced 3D edge magnetic topology and its effect on manifestation in the heat and particle flux and influence on ELMy characteristics; the role of zonal flows limit cycle for the L-H transition or the occurrence of the I-phase; and new small Edge Localized Mode (ELM) regime, etc. Various means for mitigating ELMs have also been demonstrated to facilitate long pulse operation, including SMBI, as well as innovative solid Li granule injection.
Since the 2012 International Atomic Energy Agency Fusion Energy Conference (IAEA-FEC), significant advances in both physics and technology has been made on the Experimental Advanced Superconducting Tomakak (EAST) toward a long-pulse stable high-confinement (H-mode) plasma regime. The experimental capabilities of EAST have been technically upgraded with the power enhancement (source power up to 26 MW) of the continuous-wave heating and current drive system, replacement of the upper graphite divertor with an ITER-like W monoblock divertor, and installation of a new internal cryopump in the upper divertor and a set of 16 in-vessel resonant magnetic perturbation (RMP) coils. This new upgrade enables EAST to be a unique operating device capable of investigating ITER-relevant long-pulse high-performance operations with dominant electron heating and low torque input within the next 5 years. Remarkable physics progress in controlling transient and steady-state divertor heat fluxes has been achieved on EAST, e.g. (i) edge-localized mode (ELM) mitigation/suppression with a number of attractive methods including lower hybrid wave (LHW), supersonic molecular beam injection (SMBI), RMPs, and real-time Li aerosol injection; and (ii) active control of steady-state power distribution by the synergy of LHW and SMBI. In the 2014 experimental campaign, a long-pulse high-performance H-mode plasma with H 98 ∼ 1.2 has been obtained with a duration over 28 s (∼200 times the energy confinement time). In addition, several new experimental advances have been achieved in the last EAST campaign, including: (i) high-performance H-mode with β N ∼ 2 and stored plasma energy ∼220 kJ; (ii) H-mode plasma sustained by neutral beam injection (NBI) alone or modulated NBI with lower hybrid current drive (LHCD), for the first time in EAST; (iii) high current drive efficiency and nearly full noninductive plasmas maintained by the new 4.6 GHz LHCD system; (iv) demonstration of a quasi-snowflake divertor configuration; and (v) observation of a new edge-coherent mode and its effects on edge transport in H-mode plasmas.
Dedicated experiments for the scaling of divertor power footprint width have been performed in the ITER-relevant radio-frequency (RF)-heated H-mode scheme under the lower single null, double null and upper single null divertor configurations in the Experimental Advanced Superconducting Tokamak (EAST) under lithium wall coating conditioning. A strong inverse scaling of the edge localized mode (ELM)-averaged power fall-off width with the plasma current (equivalently the poloidal field) has been demonstrated for the attached type-III ELMy H-mode as by various heat flux diagnostics including the divertor Langmuir probes (LPs), infra-red (IR) thermograph and reciprocating LPs on the low-field side. The IR camera and divertor LP measurements show that , in good agreement with the multi-machine scaling trend during the inter-ELM phase between type-I ELMs or ELM-free enhanced Dα (EDA). H-mode. However, the magnitude is nearly doubled, which may be attributed to the different operation scenarios or heating schemes in EAST, i.e., dominated by electron heating. It is also shown that the type-III ELMs only broaden the power fall-off width slightly, and the ELM-averaged width is representative for the inter-ELM period. Furthermore, the inverse Ip (Bp) scaling appears to be independent of the divertor configurations in EAST. The divertor power footprint integral width, fall-off width and dissipation width derived from EAST IR camera measurements follow the relation, λint ≅ λq + 1.64S, yielding . Detailed analysis of these three characteristic widths was carried out to shed more light on their extrapolation to ITER.
Abstract:The Arabidopsis AtGRP7 gene, encoding a glycine-rich RNA-binding protein, has been shown to be involved in the regulation of a circadian-regulated negative feedback loop. However, little is known about the role of AtGRP7 in mediating abscisic acid (ABA) and stress responses. Here, we show that AtGRP7 plays a role in both. AtGRP7 was repressed by ABA, high salt and mannitol. Disruption of AtGRP7 by T-DNA insertion led to hypersensitive responses to ABA in both seed germination and root growth assays. The atgrp7-1 mutant was also hypersensitive to osmotic stress conditions, such as high salt and high concentrations of mannitol. In addition, the atgrp7-1 mutant plants accumulated significantly higher transcript levels of two ABA-and stress-inducible genes, RD29A and RAB18, compared with the wild-type plants. Taken together, these results suggest that AtGRP7 is involved in the regulation of ABA and stress responses.
Deuterium high-confinement (H-mode) plasmas, lasting up to 3.45 s, have been generated in the EAST by ion cyclotron range of frequency (ICRF) heating. H-mode access was achieved by coating the molybdenum-tiled first wall with lithium to reduce the hydrogen recycling from the wall. H-mode plasmas with plasma currents between 0.4 and 0.6 MA and axial toroidal magnetic fields between 1.85 and 1.95 T were generated by 27 MHz ICRF heating of deuterium plasma with hydrogen minority. The ICRF input power required to access the H-mode was 1.6–1.8 MW. The line-averaged density was in the range (1.83–2.3) × 1019 m−3. 200–500 Hz type-III edge localized mode activity was observed during the H-mode phase. The H-mode confinement factor, H98IPB(y, 2), was ∼0.7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.