In this paper, we consider the problem of detecting a multichannel signal in interference and noise when signal mismatch happens. We first propose two selective detectors, since their strong selectivity is preferred in some situations. However, these two detectors would not be suitable candidates if a robust detector is needed. To overcome this shortcoming, we then devise a tunable detector, which is parametrized by a non-negative scaling factor, referred to as the tunable parameter. By adjusting the tunable parameter, the proposed detector can smoothly change its capability in rejecting or robustly detecting a mismatch signal. Moreover, one selective detector and the tunable detector with an appropriate tunable parameter can provide nearly the same detection performance as existing detectors in the absence of signal mismatch. We obtain analytical expressions for the probabilities of detection (PDs) and probabilities of false alarm (PFAs) of the three proposed detectors, which are verified by Monte Carlo simulations.
Transformer is the most important equipment in the power system. The research and development of fault diagnosis technology for Internet of Things equipment can effectively detect the operation status of equipment and eliminate hidden faults in time, which is conducive to reducing the incidence of accidents and improving people's life safety index. Objective To explore the utility of Internet of Things in power transformer fault diagnosis system. Methods A total of 30 groups of transformer fault samples were selected, and 10 groups were randomly selected for network training, and the rest samples were used for testing. The matter-element extension mathematical model of power transformer fault diagnosis was established, and the correlation function was improved according to the characteristics of three ratio method. Each group of power transformer was diagnosed for four months continuously, and the monitoring data and diagnosis were recorded and analyzed result. GPRS communication network is used to complete the communication between data acquisition terminal and monitoring terminal. According to the parameters of the database, the working state of the equipment is set, and various sensors are controlled by the instrument driver module to complete the diagnosis of transformer fault system. Results The detection success rate of the power transformer fault diagnosis system model established in this paper is as high as 95.6%, the training error is less than 0.0001, and it can correctly identify the fault types of the non training samples. It can be seen that the technical support of the Internet of Things is helpful to the upgrading and maintenance of the power transformer fault diagnosis system.
Transformer is the most important equipment in the power system. The research and development of fault diagnosis technology for Internet of things equipment can effectively detect the operation status of equipment and eliminate hidden faults in time, which is conducive to reducing the incidence of accidents and improving people's life safety index. Objective: To explore the utility of Internet of things in power transformer fault diagnosis system. Methods: A total of 30 groups of transformer fault samples were selected, and 10 groups were randomly selected for network training, and the rest samples were used for testing. The matter-element extension mathematical model of power transformer fault diagnosis was established, and the correlation function was improved according to the characteristics of three ratio method. Each group of power transformer was diagnosed for four months continuously, and the monitoring data and diagnosis were recorded and analyzed result. GPRS communication network is used to complete the communication between data acquisition terminal and monitoring terminal. According to the parameters of the database, the working state of the equipment is set, and various sensors are controlled by the instrument driver module to complete the diagnosis of transformer fault system. Results: The detection success rate of the power transformer fault diagnosis system model established in this paper is as high as 95.6%, the training error is less than 0.000l, and it can correctly identify the fault types of the non training samples. It can be seen that the technical support of the Internet of things is helpful to the upgrading and maintenance of the power transformer fault diagnosis system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.