The optimized cloaking design for conducting cylinders of different sizes is studied based on the Mie scattering theory. We construct a concentric multi-layered cloak made of alternating materials with isotropic dielectrics and epsilon-near-zero (ENZ) material, the thickness of which can be determined through genetic algorithm. As the radius of the conducting cylinder increases, high order scattering contributions are becoming evident, and more layers are needed. The scattering cross sections of three different radii of PEC cylinders are minimized by utilizing different numbers of multi-layers respectively. We find that eight or less optimized layers can cancel most of the scattering from a conducting cylinder with its dimension compared to wavelength, and more effectively when taking the ENZ material as the inner starting shell. The frequency dependence of total scattering is also studied, leading to the result that the bandwidth decreases as the size of concealed PEC cylinder increases. Furthermore, it is shown that the cloaking efficiency is less sensitive to the permittivity and thickness of the ENZ material, due to the small phase variation in the ENZ material. The multi-layered cloak designed for a PEC target can also be used to evidently reduce the scattering of a dielectric core and design a multi-layered elliptical cloak.
Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material, which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.