A 16-degree-of-freedom non-linear roll dynamic model is developed for an articulated engineering vehicle considering non-linear road excitations and non-linear characteristics of vehicle structures. In addition, a variable step-size numerical method is proposed to solve the non-linear dynamic model. The proposed numerical method can improve the calculation accuracy and the computational stability. Through the proposed dynamic model, an equation is derived considering time-varying tire load characteristics to reflect the roll stability of an articulated engineering vehicle. Using the proposed roll stability equation, the driving stability can be effectively evaluated for an articulated engineering vehicle with different system parameters. The analysis results show that the roll stability decreases significantly with the increase in vehicle speed, centroid height of engineering vehicle, or lateral slope angle. The influence of vehicle speed and lateral slope angle on roll stability is greater than that of the centroid height of engineering vehicle. When steering on the road with a lateral slope angle, the roll angle and the lateral load transfer ratio curves fluctuate with time. As the lateral slope angle increases, the fluctuation is stronger. Overall, the proposed model can accurately evaluate the roll stability of a driving articulated engineering vehicle and accurately determine the unstable tilting of an articulated engineering vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.