BackgroundCellulosic biofuels are sustainable compared to fossil fuels. However, inhibitors, such as acetic acid generated during lignocellulose pretreatment and hydrolysis, would significantly inhibit microbial fermentation efficiency. Microbial mutants able to tolerate high concentration of acetic acid are needed urgently to alleviate this inhibition.ResultsZymomonas mobilis mutants AQ8-1 and AC8-9 with enhanced tolerance against acetic acid were generated via a multiplex atmospheric and room temperature plasma (mARTP) mutagenesis. The growth and ethanol productivity of AQ8-1 and AC8-9 were both improved in the presence of 5.0–8.0 g/L acetic acid. Ethanol yield reached 84% of theoretical value in the presence of 8.0 g/L acetic acid (~ pH 4.0). Furthermore, a mutant tolerant to pH 3.5, named PH1-29, was generated via the third round of ARTP mutagenesis. PH1-29 showed enhanced growth and ethanol production under both sterilized/unsterilized conditions at pH 4.0 or 3.5. Intracellular NAD levels revealed that mARTP mutants could modulate NADH/NAD+ ratio to respond to acetic acid and low pH stresses. Moreover, genomic re-sequencing revealed that eleven single nucleic variations (SNVs) were likely related to acetic acid and low pH tolerance. Most SNVs were targeted in regions between genes ZMO0952 and ZMO0956, ZMO0152 and ZMO0153, and ZMO0373 and ZMO0374.ConclusionsThe multiplex mutagenesis strategy mARTP was efficient for enhancing the tolerance in Z. mobilis. The ARTP mutants generated in this study could serve as potential cellulosic ethanol producers.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1348-9) contains supplementary material, which is available to authorized users.
Background: Furfural and acetic acid are the two major inhibitors generated during lignocellulose pretreatment and hydrolysis, would severely inhibit the cell growth, metabolism, and ethanol fermentation efficiency of Zymomonas mobilis. Effective genome shuffling mediated by protoplast electrofusion was developed and then applied to Z. mobilis. Results: After two rounds of genome shuffling, 10 different mutants with improved cell growth and ethanol yield in the presence of 5.0 g/L acetic acid and 3.0 g/L furfural were obtained. The two most prominent genome-shuffled strains, 532 and 533, were further investigated along with parental strains in the presence of 7.0 g/L acetic acid and 3.0 g/L furfural. The results showed that mutants 532 and 533 were superior to the parental strain AQ8-1 in the presence of 7.0 g/L acetic acid, with a shorter fermentation time (30 h) and higher productivity than AQ8-1. Mutant 533 exhibited subtle differences from parental strain F34 in the presence of 3.0 g/L furfural. Mutations present in 10 genome-shuffled strains were identified via whole-genome resequencing, and the source of each mutation was identified as either de novo mutation or recombination of the parent genes. Conclusions: These results indicate that genome shuffling is an efficient method for enhancing stress tolerance in Z. mobilis. The engineered strains generated in this study could be potential cellulosic ethanol producers in the future.
Background Reducing fresh water consumption and nutrient addition will be an effective way to reduce the whole cost of bioethanol production. On the other hand, treatment of biogas slurry derived from anaerobic digestion (AD), in which a great amount of nutrients is still left, costs too much to remove these pollutants. It would be beneficial for both digestate valorization and ethanol production if biogas slurry is used for producing bioethanol. However, both hyperosmosis and potential biotoxic components of the biogas slurry can severely inhibit fermentation. Results In this study, two rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with adaptive laboratory evolution (ALE) were applied to improve the adaptability and genetic stability of Zymomonas mobilis in biogas slurry. Mutants D95 and S912 were identified. Growth of the mutants was remarkably improved in biogas slurry. The highest ethanol productivity reached 0.63 g/L/h which was 61.7% higher than ZM4 (0.39 g/L/h). Genomic re-sequencing results also revealed that single nucleic variations (SNVs) and Indels occurred in the mutants, which are likely related to inhibitor in biogas slurry and low pH tolerance. Conclusions Our study demonstrated that these mutant strains have great potential to produce ethanol using biogas slurry to replace fresh water and nutrients. Electronic supplementary material The online version of this article (10.1186/s13068-019-1463-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.