Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting.
A concept of tissue-cell adaptation to hypoxia (hypoxic preconditioning) is raised and its corresponding animal model is introduced. A significantly strengthened tolerance to hypoxia and a protective effect of the brain extracts from the preconditioned animals are presented. Changes in animals' behavior, neuromorphology, neurophysiology, neurochemistry and molecular neurobiology during preconditioning are described. Energy saving, hypometabolism, and cerebral protection in particular are thought to be involved in the development of hypoxic tolerance and tissue-cell protection. The essence and significance of the hypoxic tissue-cell adaptation or preconditioning are discussed in terms of biological evolution and practical implication.
Tolerance to hypoxia in vivo and in vitro was significantly increased by acute and repetitive exposure of mice to autoprogressive hypoxia. The average tolerance times of the successive 2nd, 3rd, 4th and 5th runs of exposure were, respectively, 2, 4, 6 and 8 times as long as that of the first exposure. The survival times under hypobaric chamber and cyanide toxification in the 4th exposure were, respectively, 10 (and even as much as 86) and 4 times those in control mice without exposure to hypoxia. Mandibular respiration and spinal reflex in vitro in hypoxia-resistant animals lasted 5–6 times as long as in control animals not previously exposed to hypoxia. Animals that received brain homogenate from hypoxia-resistant mice remained alive in a hypobaric chamber 2 times as long as those that received homogenate from controls and those that received saline. These results indicate that a kind of quickly developing adaptation with increased tolerance is achieved by acute and repetitive exposure of mice to progressive autohypoxia and some plastic or adaptive changes occur in the brain of hypoxia-resistant animals, including the production of some kind of water-soluble antihypoxic factors.
It is well known that cobalt chloride (CoCl2) can enhance the stability of hypoxia-inducible factor (HIF)-1α. The aim of this study is to detect the effect of CoCl2 on the hypoxia tolerance of mice which were repeatedly exposed to autoprogressive hypoxia. Balb/c mice were randomly divided into groups of chemical pretreatment and normal saline (NS), respectively injected with CoCl2 and NS 3 h before exposure to hypoxia for 0 run (H0), 1 run (H1), and 4 runs (H4). Western Blot, electrophoretic mobility shift assay (EMSA), extracellular recordings population spikes in area cornus ammonis I (CA 1) of mouse hippocampal slices and real-time were used in this study. Our results demonstrated that the tolerance of mice to hypoxia, the changes of HIF-1α protein level and HIF-1 DNA binding activity in mice hippocampus, the mRNA level of erythropoietin (EPO) and vascular endothelial growth factor (VEGF), and the disappearance time of population spikes of hippocampal slices were substantially different between the control group and the CoCl2 group. Over-induction of HIF-1α by pretreatment with CoCl2 before hypoxia did not increase the hypoxia tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.