With the continuous improvement of train speeds, it is necessary to find the possible problems of bearings in time, otherwise they will cause serious consequences. Aiming at the characteristics of rapid temperature change of bearings, a thin film thermocouple temperature sensor was developed to measure the real-time temperature of the bearing’s rolling elements during train operation. Using dc pulse magnetron sputtering technology, Al2O3 film, NiCr film, NiSi film, and SiO2 film were successively deposited on an aluminum alloy substrate. We studied their microstructure, static characteristics, dynamic characteristics, and repeatability. Finally, we installed an adaptive film temperature sensor on the bearing testing machine to measure the temperature of the rolling elements. The results show that the developed temperature sensor has good linearity in the range of 30~180 ℃. The Seebeck coefficient is 40.69 μV/℃, the nonlinear fitting error is less than 0.29%, the maximum repeatability error is less than 4.55%, and the dynamic response time is 1.42 μs. The temperature of the measured rolling elements is 6~10 ℃ higher than that of the outer ring, which can reflect the actual temperature of the bearing operation.
At present, piezoelectric sensors are primarily applied in health monitoring areas. They may fall off owing to the adhesive’s durability, and even damage the monitored equipment. In this paper, a piezoelectric film sensor (PFS) based on a positive piezoelectric effect (PPE) is presented and a ZnO film is deposited on a GH4169 superalloy steel (GSS) substrate using magnetron sputtering. The microstructure and micrograph of ZnO piezoelectric thin films were analyzed by an X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), and atomic force microscope (AFM). The results showed that the surface morphology was dense and uniform and had a good c-axis-preferred orientation. According to the test results of five piezoelectric sensors, the average value of the longitudinal piezoelectric coefficient was 1.36 pC/N, and the average value of the static calibration sensitivity was 19.77 mV/N. We selected the sensor whose parameters are closest to the average value for the dynamic test experiment and we drew the output voltage response curve of the piezoelectric film sensor under different loads. The measurement error was 4.03% when repeating the experiment six times. The research achievements reveal the excellent performance of the piezoelectric film sensor directly deposited on a GH4169 superalloy steel substrate. This method can reduce measurement error caused by the adhesive and reduce the risk of falling off caused by the aging of the adhesive, which provides a basis for the research of smart bolts and guarantees a better application in structural health monitoring (SHM).
The research on the thermal characteristics of railway double-row tapered roller bearing is of great significance for its structural design and operation monitoring. We established the quasi-static mechanical model of the bearing according to the test conditions, and we obtained the load distribution and kinematic parameters of the bearing. We studied the temperature distribution of railway double-row tapered roller bearing under test conditions through finite element analysis, which was consistent with the test results. We built a bearing testbed to study the effects of different rotating speeds on the temperature distribution of the bearing inner ring, outer ring, and roller. The results show that the speed dramatically affects the bearing inner ring. With the rate increase, the temperature difference between the inner and outer rings decreases gradually, and the temperature at the large end of the roller is the highest.
ZnO film is widely used in the field of health monitoring sensors, which has high requirements for the piezoelectric coefficient and film-to-substrate adhesion of the ZnO film. In this study, ZnO thin films were grown on a GH4169 superalloy steel (GSS) substrate using magnetron sputtering, and the effects of the sputtering power, argon–oxygen ratio, and sputtering pressure on the piezoelectric coefficient and film-to-substrate adhesion were studied. The composition, microstructure, and crystal orientation of ZnO thin films deposited under different process parameters were analyzed using X-ray diffraction (XRD), a scanning electron microscope (SEM), and an energy spectrum analyzer (EDS). The piezoelectric coefficient d33 was measured using a piezoelectric coefficient measuring instrument. The critical value of adhesion between the film and substrate was measured using the scratch method. The results demonstrated that the ZnO films had the most desirable properties when the sputtering power was 150 W, the argon–oxygen ratio was 25:10, and the sputtering pressure was 0.7 Pa. The XRD results showed that the ZnO film samples had the strongest (002) crystal orientation at 2θ = 34.4°; the SEM photos showed that the film samples were flat and uniform; and the EDS composition analysis results showed that the composition was close to the theoretical value. The maximum d33 coefficient value was 5.12 pC/N, and the maximum value of film-to-substrate adhesion between the ZnO films and GSS substrate was 4220 mN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.