Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.
Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au146(p-MBA)57 (p-MBA: para-mercaptobenzoic acid), solved by electron diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiationsensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β 2 -adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.femtosecond diffraction | crystallography | XFEL | structural biology U sing extremely bright, short-timescale X-ray pulses produced by X-ray free-electron lasers (XFELs), femtosecond crystallography (FX) is an emerging method that expands the structural information accessible from very small or very radiation-sensitive macromolecular crystals. Central to this method is the "diffraction before destruction" (1) process in which a still diffraction image is produced by a single X-ray pulse before significant radiation-induced electronic and atomic rearrangements occur within the crystal (1-3). At the Linac Coherent Light Source (LCLS) at SLAC, a single ∼50-fs-long X-ray pulse can expose a crystal to as many X-ray photons as a typical synchrotron beam line produces in about a second. Exposing small crystals to these intense ultrashort pulses circumvents the dose limitations of conventional X-ray diffraction experiments (4) and may produce useful data to resolutions beyond what is achievable at synchrotrons (5). This innovation provides a pathway to obtain atomic information from proteins that only form micrometer-to nanometer-sized crystals, such as many membrane proteins and large multiprotein complexes. Moreover, XFELs enable "diffraction before reduction" data collection to address another major challenge in structural enzymology by providing a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzyme active sites (6), such as high-valency reaction intermediates that may be significantly photoreduced during a single X-ray exposure at a synchrotron, even at very small doses (7-11). Furthermore, the use of short (tens of femtoseconds) X-ray pulses further complements the structural characterization of biochemical reaction processes by providing access to a time domain two to three orders of magnitude faster (12, 13) than currently accessible using synchrotro...
A series of 1-H-pyrazole-3-carboxamide derivatives have been designed and synthesized that exhibit excellent FLT3 and CDK inhibition and antiproliferative activities. A structure-activity-relationship study illustrates that the incorporation of a pyrimidine-fused heterocycle at position 4 of the pyrazole is critical for FLT3 and CDK inhibition. Compound 50 (FN-1501), which possesses potent inhibitory activities against FLT3, CDK2, CDK4, and CDK6 with IC values in the nanomolar range, shows antiproliferative activities against MV4-11 cells (IC: 0.008 μM), which correlates with the suppression of retinoblastoma phosphorylation, FLT3, ERK, AKT, and STAT5 and the onset of apoptosis. Acute-toxicity studies in mice show that compound 50 (LD: 186 mg/kg) is safer than AT7519 (32 mg/kg). In MV4-11 xenografts in a nude-mouse model, compound 50 can induce tumor regression at the dose of 15 mg/kg, which is more efficient than cytarabine (50 mg/kg). Taken together, these results demonstrate the potential of this unique compound for further development into a drug applied in acute-myeloid-leukemia (AML) therapeutics.
The current practice for identifying crystal hits for X-ray crystallography relies on optical microscopy techniques that are limited to detecting crystals no smaller than 5 μm. Because of these limitations, nanometer-sized protein crystals cannot be distinguished from common amorphous precipitates, and therefore go unnoticed during screening. These crystals would be ideal candidates for further optimization or for femtosecond X-ray protein nanocrystallography. The latter technique offers the possibility to solve high-resolution structures using submicron crystals. Transmission electron microscopy (TEM) was used to visualize nanocrystals (NCs) found in crystallization drops that would classically not be considered as "hits." We found that protein NCs were readily detected in all samples tested, including multiprotein complexes and membrane proteins. NC quality was evaluated by TEM visualization of lattices, and diffraction quality was validated by experiments in an X-ray free electron laser.T he emergence of X-ray free electron laser (X-FEL)-based serial femtosecond crystallography holds the promise of solving the 3D structure of proteins that can only crystallize as "nanocrystals" (NCs) or are highly sensitive to radiation damage (1-5). NCs appropriate for X-FEL experiments are considered to be 200 nm to 2 μm in size (6). This size is constrained primarily by the requirements of the NC delivery system to the X-FEL beam. In addition to allowing for structure resolution of NCs by X-FEL experiments, they provide the advantage of requiring no crystal cryoprotection because these experiments are performed at room temperature (3, 7). Given the opportunities that X-FELs offer to the field of crystallography, efficient methodologies to detect NCs from single crystallography drops and to optimize these identified conditions yielding NCs will be essential for future developments in structural biology. Current methods to detect the presence of NCs include dynamic light scattering (DLS), bright-field microscopy, birefringence microscopy, and intrinsic tryptophan UV fluorescence imaging, as well as technologies that rely upon second harmonic generation, such as second order nonlinear imaging of chiral crystals (SONICC) (8, 9) and X-ray powder diffraction. However, limitations of these imaging techniques include (i) ineffective detection of crystals smaller than 5 μm (8, 10), (ii) false-positive conditions as a result of interference from precipitate backgrounds (8, 10), and (iii) false-negative conditions resulting from the lack of tryptophan residues in the case of UV fluorescence and from the lack of chiral centers in the case of SONICC (11). Although DLS can accurately measure the size distribution of nanometer-sized protein aggregates, it is unable to distinguish unambiguously between amorphous and crystalline (12). Finally, X-ray powder diffraction, a method that has been applied to evaluate samples for the presence and concentration of NCs, requires more material than is produced in a single crystallization screening d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.