Autoimmune diabetes occurs when invading lymphocytes destroy insulin-producing β cells in pancreatic islets. The role of lymphocytic aggregates at this inflammatory site is not understood. We find that B and T lymphocytes attacking islets in NOD mice organize into lymphoid structures with germinal centers. Analysis of BCR L chain genes was used to investigate selection of B lymphocytes in these tertiary lymphoid structures and in draining pancreatic lymph nodes. The pancreatic repertoire as a whole was found to be highly diverse, with the profile of L chain genes isolated from whole pancreas differing from that observed in regional lymph nodes. A Vκ14 L chain predominated within the complex pancreatic repertoire of NOD mice. Skewing toward Vκ4 genes was observed in the pancreas when the repertoire of NOD mice was restricted using a fixed Ig H chain transgene. Nucleotide sequencing of expressed Vκs identified shared mutations in some sequences consistent with Ag-driven selection and clonal expansion at the site of inflammation. Isolated islets contained oligoclonal B lymphocytes enriched for the germinal center marker GL7 and for sequences containing multiple mutations within CDRs, suggesting local T-B interactions. Together, these findings identify a process that selects B lymphocyte specificities within the pancreas, with further evolution of the selected repertoire at the inflamed site. This interpretation is reinforced by Ag-binding studies showing a large population of insulin-binding B lymphocytes in the pancreas compared with draining lymph nodes.
Starch synthesis is a key process that influences crop yield and quality, though little is known about the regulation of this complex metabolic pathway. Here, we present the identification of ZmbZIP91 as a candidate regulator of starch synthesis via co-expression analysis in maize (Zea mays L.). ZmbZIP91 was strongly associated with the expression of starch synthesis genes. Reverse tanscription-PCR (RT-PCR) and RNA in situ hybridization indicated that ZmbZIP91 is highly expressed in maize endosperm, with less expression in leaves. Particle bombardment-mediated transient expression in maize endosperm and leaf protoplasts demonstrated that ZmbZIP91 could positively regulate the expression of starch synthesis genes in both leaves and endosperm. Additionally, the Arabidopsis mutant vip1 carried a mutation in a gene (VIP1) that is homologous to ZmbZIP91, displayed altered growth with less starch in leaves, and ZmbZIP91 was able to complement this phenotype, resulting in normal starch synthesis. A yeast one-hybrid experiment and EMSAs showed that ZmbZIP91 could directly bind to ACTCAT elements in the promoters of starch synthesis genes (pAGPS1, pSSI, pSSIIIa, and pISA1). These results demonstrate that ZmbZIP91 acts as a core regulatory factor in starch synthesis by binding to ACTCAT elements in the promoters of starch synthesis genes.
Wild potato species have substantial phenotypic and physiological diversity. Here, we report a comprehensive assessment of wild and cultivated potato species based on genomic analyses of 201 accessions of Solanum section Petota. We sequenced the genomes of these 201 accessions and identified 6 487 006 high-quality single nucleotide polymorphisms (SNPs) from 167 accessions in clade 4 of Solanum section Petota, including 146 wild and 21 cultivated diploid potato accessions with a broad geographic distribution. Genome-wide genetic variation analysis showed that the diversity of wild potatoes is higher than that of cultivated potatoes, and much higher genetic diversity in the agronomically important disease resistance genes was observed in wild potatoes. Furthermore, by exploiting information about known quantitative trait loci (QTL), we identified 609 genes under selection, including those correlated with the loss of bitterness in tubers and those involved in tuberization, two major domesticated traits of potato. Phylogenetic analyses revealed a north-south division of all species in clade 4, not just those in the S. brevicaule complex, and further supported S. candolleanum as the progenitor of cultivated potato and the monophyletic origin of cultivated potato in southern Peru. In addition, we analyzed the genome of S. candolleanum and identified 529 genes lost in cultivated potato. Collectively, the molecular markers generated in this study provide a valuable resource for the identification of agronomically important genes useful for potato breeding.
SummaryThe proteasome activator REGg mediates a shortcut for the destruction of intact mammalian proteins. The biological roles of REGg and the underlying mechanisms are not fully understood. Here we provide evidence that REGg regulates cellular distribution of p53 by facilitating its multiple monoubiquitylation and subsequent nuclear export and degradation. We also show that inhibition of p53 tetramerization by REGg might further enhance cytoplasmic relocation of p53 and reduce active p53 in the nucleus. Furthermore, multiple monoubiquitylation of p53 enhances its physical interaction with HDM2 and probably facilitates subsequent polyubiquitylation of p53, suggesting that monoubiquitylation can act as a signal for p53 degradation. Depletion of REGg sensitizes cells to stress-induced apoptosis, validating its crucial role in the control of apoptosis, probably through regulation of p53 function. Using a mouse xenograft model, we show that REGg knockdown results in a significant reduction of tumor growth, suggesting an important role for REGg in tumor development. Our study therefore demonstrates that REGg-mediated inactivation of p53 is one of the mechanisms involved in cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.