Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Ducted fuel injection spray is a new technology for reducing soot formation in heavy-duty diesel engines. In this work, the ducted fuel injection spray characteristics with different duct inner diameters and different standoff distances were investigated and compared with free spray. Duct inner diameter ranged from 1.5 to 4 mm, and standoff distance varied between 0.9 and 4.9 mm. Mie-scattering optical technique was used to characterize spray characteristics under various injection pressures in a constant-volume spray chamber. Ambient gas pressure of up to 6 MPa when spraying. The results showed that ducted fuel injection spray with smaller duct has better spray diffusion compared to those of ducted fuel injection sprays with larger ducts and free spray from the perspectives of spray tip penetration, spray cone angle and spray area. Increasing standoff distance could increase spray velocity. Ducted fuel injection spray with smaller duct formed a mushroom-shaped head and large-scale vortex flow close to the duct outlet. All the advantages of ducted fuel injection spray with smaller duct are interpreted as evidence of improving fuel–gas mixing quality significantly.
Concerns over energy efficiency and greenhouse gas (GHG) emissions are driving research investments into advanced propulsion technologies. Plug-in hybrid electric vehicles (PHEVs) can provide a bridge that connects transport electrification to renewable bioenergy sources such as ethanol. However, it remains unclear how this pathway can simultaneously address economic, energy and environmental goals. To tackle this challenge, the present study explores, for the first time, the multiobjective optimal sizing of PHEVs powered by low-carbon sources of electricity and ethanol-gasoline blend. The empirical ethanolgasoline blend model is incorporated into the PHEV simulation whose relevant parameters are validated using laboratory data from the European Commission -Joint Research Centre. We develop a full picture of the use-phase well-to-wheel (WTW) GHG emissions from ethanol, gasoline and grid electricity and their energy consumptions. Consequently, market-oriented PHEV sizing solutions are provided as per the power utility generation portfolio and automobile fuel properties of the target region. The results indicate that better performances of the PHEV, regarding GHG emissions and energy consumption, are associated with larger battery size and smaller engine displacement but result in a higher cost-to-power ratio. Specifically, for E25-fuelled PHEVs in markets with world average electricity carbon intensity, every 1.0 USD/kW increase in cost-to-power ratio leads to savings of 1.6 MJ energy consumption and 1.7 g CO2-eq/km WTW GHG emissions. Moreover, a clear benefit of using E25 in the hybrid propulsion system is identified, where the energy consumption and GHG emissions can be reduced by 5.9 % and 12.3 %, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.