Abstract:The graph entropies inspired by Shannon's entropy concept become the information-theoretic quantities for measuring the structural information of graphs and complex networks. In this paper, we continue studying some new properties of the graph entropies based on information functionals involving vertex degrees. We prove the monotonicity of the graph entropies with respect to the power exponent. Considering only the maximum and minimum degrees of the (n, m)-graph, we obtain some upper and lower bounds for the degree-based graph entropy. These bounds have different performances to restrict the degree-based graph entropy in different kinds of graphs. Moreover the degree-based graph entropy can be estimated by these bounds.
Abstract:The degree-based network entropy which is inspired by Shannon's entropy concept becomes the information-theoretic quantity for measuring the structural information of graphs and complex networks. In this paper, we study some properties of the degree-based network entropy. Firstly we develop a refinement of Jensen's inequality. Next we present the new and more accurate upper bound and lower bound for the degree-based network entropy only using the order, the size, the maximum degree and minimum degree of a network. The bounds have desirable performance to restrict the entropy in different kinds of graphs. Finally, we show an application to structural complexity analysis of a computer network modeled by a connected graph.Keywords: Shannon's entropy; degree-based network entropy; Jensen's inequality; upper bound and lower bound of entropy; network structure
In the field of information theory, statistics and other application areas, the information-theoretic divergences are used widely. To meet the requirement of metric properties, we introduce a class of new metrics based on triangular discrimination which are bounded. Moreover, we obtain some sharp inequalities for the triangular discrimination and other information-theoretic divergences. Their asymptotic approximation properties are also involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.