The interaction between segregated alloying elements (Al, Li, Sn, Y, and Ca) and three crack systems is investigated in magnesium simple crystal under mode I loading condition. Using molecular statics in the framework of the (modified) embedded-atoms method, the effect of segregated alloying elements on both the fracture behavior and the intrinsic fracture toughness were identified, and analyzed quantitatively in the framework of the Rice's theory for dislocation emission at a crack tip (Rice, 1992. J. Mech. Phys. Solids 40 239-271). In addition, the variations of the critical stress intensity factor as a function of the misfit strain between the alloying element and magnesium are discussed. The results revealed the existence of a transition from cleavage to dislocation emission at a crack tip. Such transition from cleavage to dislocation emission at the crack tip depends on (i) the orientation of the crack system, and (ii) the nature of the alloying element segregated at the crack tip. Furthermore, when analyzed as a function of the misfit strain between the alloying element and magnesium, our data suggest a direct relation between the fracture toughness and the misfit strain, independently of crack orientation. While alloying element with compressive misfit strain enhances the intrinsic fracture toughness of magnesium single crystal, alloying element with tensile misfit strain worsens the intrinsic fracture toughness of magnesium single crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.