Automatic building segmentation from aerial imagery is an important and challenging task because of the variety of backgrounds, building textures and imaging conditions. Currently, research using variant types of fully convolutional networks (FCNs) has largely improved the performance of this task. However, pursuing more accurate segmentation results is still critical for further applications such as automatic mapping. In this study, a multi-constraint fully convolutional network (MC-FCN) model is proposed to perform end-to-end building segmentation. Our MC-FCN model consists of a bottom-up/top-down fully convolutional architecture and multi-constraints that are computed between the binary cross entropy of prediction and the corresponding ground truth. Since more constraints are applied to optimize the parameters of the intermediate layers, the multi-scale feature representation of the model is further enhanced, and hence higher performance can be achieved. The experiments on a very-high-resolution aerial image dataset covering 18 km 2 and more than 17,000 buildings indicate that our method performs well in the building segmentation task. The proposed MC-FCN method significantly outperforms the classic FCN method and the adaptive boosting method using features extracted by the histogram of oriented gradients. Compared with the state-of-the-art U-Net model, MC-FCN gains 3.2% (0.833 vs. 0.807) and 2.2% (0.893 vs. 0.874) relative improvements of Jaccard index and kappa coefficient with the cost of only 1.8% increment of the model-training time. In addition, the sensitivity analysis demonstrates that constraints at different positions have inconsistent impact on the performance of the MC-FCN.
Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone beam computed tomography (CBCT) scans is essential for orthodontic diagnosis and treatment planning. Although various (semi)automated methods have been proposed to segment the jaw or the teeth, there is still a lack of fully automated segmentation methods that can simultaneously segment both anatomic structures in CBCT scans (i.e., multiclass segmentation). In this study, we aimed to train and validate a mixed-scale dense (MS-D) convolutional neural network for multiclass segmentation of the jaw, the teeth, and the background in CBCT scans. Thirty CBCT scans were obtained from patients who had undergone orthodontic treatment. Gold standard segmentation labels were manually created by 4 dentists. As a benchmark, we also evaluated MS-D networks that segmented the jaw or the teeth (i.e., binary segmentation). All segmented CBCT scans were converted to virtual 3-dimensional (3D) models. The segmentation performance of all trained MS-D networks was assessed by the Dice similarity coefficient and surface deviation. The CBCT scans segmented by the MS-D network demonstrated a large overlap with the gold standard segmentations (Dice similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021, teeth). The MS-D network–based 3D models of the jaw and the teeth showed minor surface deviations when compared with the corresponding gold standard 3D models (0.390 ± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network took approximately 25 s to segment 1 CBCT scan, whereas manual segmentation took about 5 h. This study showed that multiclass segmentation of jaw and teeth was accurate and its performance was comparable to binary segmentation. The MS-D network trained for multiclass segmentation would therefore make patient-specific orthodontic treatment more feasible by strongly reducing the time required to segment multiple anatomic structures in CBCT scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.