Effective prediction of ionospheric total electron content (TEC) is very important for Global Navigation Satellite System (GNSS) positioning and other related applications. This paper proposes an ionospheric TEC prediction method using the nonlinear autoregressive with exogenous input (NARX) neural network, which uses previous TEC data and external time parameter inputs to establish a TEC prediction model. During the years of different solar activities, 12 datasets of 3 stations with different latitudes are used for experiments. Each dataset uses the first 120 days for training and the next 20 days for testing. For each test dataset, a sliding window strategy is adopted in the prediction process, wherein the TEC of future 2 days are predicted by the true TEC values of the previous 2 days. The results show that in the year with active solar activity (2011), the TEC prediction with the NARX network can improve the accuracy by 32.3% and 43.5%, compared with the autoregressive integrated moving average (ARIMA) model and the 2-day predicted TEC product, named C2PG. While in the year with calm solar activity (2017), the prediction accuracy can be improved by 20.7% and 22.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.