Background
Periprosthetic joint infection (PJI) has been increasingly documented; however, its preoperative accurate diagnosis remains challenging. Furthermore, there is a dire need to identify appropriate and effective biomarkers. We aimed to evaluate the relationship between globulin, albumin to globulin (A/G) ratio, and development of PJI in patients undergoing revision total joint arthroplasty (TJA).
Methods
A retrospective study was conducted on patients who had undergone revision TJA between 2011 and 2018 (89 with aseptic mechanic failure and 38 with PJI). The serum proteins were explored using univariate analysis followed by multivariate logistic regression. The diagnostic performance of these proteins was assessed by the receiver operating characteristic (ROC) curve.
Results
Higher globulin levels (odds ratio [OR], 1.239; P < 0.001) and lower A/G ratio (OR, 0.007; P < 0.001) were strongly associated with the risk of PJI. ROC curve analysis demonstrated reasonable diagnostic performance for globulin (area under the curve [AUC], 0.77; sensitivity, 78.95%; and specificity, 69.66%) and A/G ratio (AUC, 0.779; sensitivity, 65.79%; and specificity, 78.65%).
Conclusions
Both globulin and A/G ratio were associated with PJI and may serve as potential adjuvant biomarkers in the diagnosis of PJI.
Aseptic implant loosening is a devastating long-term complication of total joint arthroplasty. It is mainly initiated by the interaction of wear debris and macrophages. However, how does the chronic inflammation persist and how to stop it is poorly understood. Sphingosine kinases (SPHKs) are an essential feature of immunosuppressive M2 polarisation in macrophages and a promoter for chronic inflammation. In this study, RAW 264.7 macrophages were exposed to stimulation with titanium particles (0.1 mg/ml), and the subsequent expression of SPHKs and pro-inflammatory cytokines was evaluated. The effect of inhibitors of SPHKs (FTY720, PF543, and ABC294640) on titanium particle-challenged macrophages was analysed. As for results, the amount of sphingosine kinase (SPHK)-1 and SPHK-2 in RAW264.7 macrophages increased in the presence of titanium particles in a time-dependent manner. Two inhibitors of SPHKs (FTY720 and ABC294640) suppressed titanium particle-induced tumour necrosis factor (TNF)-α and interleukin (IL)-6 production in RAW264.7 macrophages. These findings suggest that persistent stimulation with titanium particles may lead to a consistent release of TNF-α and IL-6 via SPHK-2 activity, which may lead to aseptic implant loosening. Appropriate regulation of SPHK-2 may serve as a potential new strategy in the treatment of aseptic implant loosening.
Aseptic loosening caused by peri-implant osteolysis (PIO) is a common complication after joint replacement, and there is still no better treatment than revision surgery. The wear particle-induced inflammation response, especially...
Chronic inflammation and infection in the tissue surrounding implants after total joint replacement is closely associated with the innate immune response to surgical implants. Wear particles are known to increase apoptosis and impair the innate immunity in macrophages, which can cause immunosuppression around the implants. Excessive autophagy can induce apoptosis. However, the link between autophagy and apoptosis in macrophages during chronic inflammation and infection remains unknown. In this study, we investigated the autophagy and apoptosis induced by titanium particles in RAW264.7 macrophages, and in the interface membrane of patients with late‐onset periprosthetic joint infection (PJI). We found that titanium particles stimulated autophagy and apoptosis in macrophages. Inhibition of autophagy significantly reduced titanium particle‐induced apoptosis in macrophages, which may be related to the PI3K/Akt signaling pathway. The secretion of inflammatory factors, such as IL‐1β, IL‐6, and TNF‐α, decreased after inhibition of autophagy in titanium particle‐stimulated macrophages, which may be caused by immune dysfunction due to titanium particle‐induced autophagy and apoptosis in macrophages. Furthermore, our in vivo mouse calvarial model also showed that autophagy inhibitors lowered the rate of cell apoptosis. Our findings indicate that wear particle‐induced apoptosis may be caused by enhanced autophagy in macrophages, which could potentially impair the local innate immunity in periprosthetic tissues and could be a risk factor for PJI. Based on these results, autophagy modulators may act as a new therapeutic option for PJI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.