Iron(III) oxide photoelectrodes show promise in water oxidation applications. In this study, micro-nano-structured hematite films are synthesized, and Ti ions are doped to improve photoelectric conversion efficiency. The photocurrent increases for enhanced electrical conductivity. Further enhanced photocurrent is achieved for Fe(2)O(3):Ti/ZnFe(2)O(4) heterojunction electrodes. Cyclic voltammograms combined with optical absorbance examinations demonstrate that the conduction and valence band edges of ZnFe(2)O(4) shift from those of Ti doped Fe(2)O(3) to the negative direction, which facilitates the efficient separation of electron-hole pairs at the Fe(2)O(3):Ti/ZnFe(2)O(4) interface. These findings demonstrate that, by doping hematite and by engineering the interface between the hematite and the electrolyte, charge separation can be effectively promoted and photocurrent density can be dramatically increased.
In this work, a higher concentration of Ti ions are incorporated into hydrothermally grown Ti-doped (2.2% by atomic ratio) micro-nanostructured hematite films by an in situ solid-state reaction method. The doping concentration is improved from 2.2% to 19.7% after the in situ solid-state reaction. X-ray absorption analysis indicates the substitution of Fe ions by Ti ions, without the generation of Fe²⁺ defects. Photoelectrochemical impedance spectroscopy reveals the dramatic improvement of the electrical conductivity of the hematite film after the in situ solid-state reaction. As a consequence, the photocurrent density increases 8-fold (from 0.15 mA/cm² to 1.2 mA/cm²), and it further increases up to ∼1.5 mA/cm² with the adsorption of Co ions. Our findings demonstrate that the in situ solid-state reaction is an effective method to increase the doping level of Ti ions in hematite films with the retention of the micro-nanostructure of the films and enhance the photocurrent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.