Abstract. We proved two Three Circles Theorems for harmonic functions on manifolds in integral sense. As one application, on manifold with nonnegative Ricci curvature, whose tangent cone at infinity is the unique metric cone with unique conic measure, we showed the existence of nonconstant harmonic functions with polynomial growth. This existence result recovered and generalized the former result of Y. Ding, and led to a complete answer of L. Ni's conjecture. Furthermore in similar context, combining the techniques of estimating the frequency of harmonic functions with polynomial growth, which were developed by Colding and Minicozzi, we confirmed their conjecture about the uniform bound of frequency.
In this paper, we give the first detailed proof of the shorttime existence of Deane Yang's local Ricci flow. Then using the local Ricci flow, we prove the short-time existence of the Ricci flow on noncompact manifolds, whose Ricci curvature has global lower bound and sectional curvature has only local average integral bound. The short-time existence of the Ricci flow on noncompact manifolds with bounded curvature was studied by Wan-Xiong Shi in 1990s. As a corollary of our main theorem, we get the short-time existence part of Shi's theorem in this more general context. Mathematics Subject Classification: 35K15, 53C44
In this paper, we study the large time behavior of the heat kernel on complete Riemannian manifolds with nonnegative Ricci curvature, which was studied by P. Li with additional maximum volume growth assumption. Following Y. Ding's original strategy, by blowing down the metric, using Cheeger and Colding's theory about limit spaces of Gromov-Hausdorff convergence, combining with the Gaussian upper bound of heat kernel on limit spaces, we succeed in reducing the limit behavior of the heat kernel on manifold to the values of heat kernels on tangent cones at infinity of manifold with renormalized measure. As one application, we get the consistent large time limit of heat kernel in more general context, which generalizes the former result of P. Li. Furthermore, by choosing different sequences to blow down the suitable metric, we show the first example manifold whose heat kernel has inconsistent limit behavior, which answers an open question posed by P. Li negatively.
W -entropy and reduced volume for the Ricci flow were introduced by Perelman, which had proved their importance in the study of the Ricci flow. L. Ni studied the analogous concepts for the linear heat equation on the static manifolds, and established an equation which links the large time behavior of these two. Due to the surprising similarity between those concepts in the Ricci flow and the linear heat equation, a natural question whether such equation holds for the Ricci flow ancient solution was asked by L. Ni. In this paper, we gave an alternative proof to L. Ni's original equation based on a new method. And following the same philosophy of this method, we answer L. Ni's question positively for Type I κ-solutions of the Ricci flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.