A catalytic protocol to convert aryl and heteroaryl chlorides to the corresponding trifluoromethyl sulfides is reported herein. It relies on a relatively inexpensive Ni(cod)2/dppf (cod = 1,5-cyclooctadiene; dppf = 1,1'-bis(diphenylphosphino)ferrocene) catalyst system and the readily accessible coupling reagent (Me4N)SCF3. Our computational and experimental mechanistic data are consistent with a Ni(0)/Ni(II) cycle and inconsistent with Ni(I) as the reactive species. The relevant intermediates were prepared, characterized by X-ray crystallography, and tested for their catalytic competence. This revealed that a monomeric tricoordinate Ni(I) complex is favored for dppf and Cl whose role was unambiguously assigned as being an off-cycle catalyst deactivation product. Only bidentate ligands with wide bite angles (e.g., dppf) are effective. These bulky ligands render the catalyst resting state as [(P-P)Ni(cod)]. The latter is more reactive than Ni(P-P)2, which was found to be the resting state for ligands with smaller bite angles and suffers from an initial high-energy dissociation of one ligand prior to oxidative addition, rendering the system unreactive. The key to effective catalysis is hence the presence of a labile auxiliary ligand in the catalyst resting state. For more challenging substrates, high conversions were achieved via the employment of MeCN as a traceless additive. Mechanistic data suggest that its beneficial role lies in decreasing the energetic span, therefore accelerating product formation. Finally, the methodology has been applied to synthetic targets of pharmaceutical relevance.
Difunctionalization of alkenes to incorporate two functional groups across a double bond has emerged as a powerful transformation to greatly increase molecular complexity in organic synthesis with improved efficiency. Historically, palladium-catalyzed difunctionalization of alkenes has suffered from difficulties with introducing a second functional group through reductive elimination of a Pd(II) intermediate and competing β-hydride elimination reactions. To overcome these challenges, one strategy involves utilizing a steric bulky ligand to promote the reductive elimination steps from the Pd(II) center and impeding the β-hydride elimination reactions, which are beyond the scope of this Account. Alternatively, strong oxidants have been utilized to generate high-valent palladium species, which are prone to undergo reductive elimination to form a second C-X bond. This new strategy has been extensively applied to explore the difunctionalization of alkenes with enriched functional group diversity over the past decade. In this Account, we discuss our exploration and application of a "high-valent palladium strategy" for the synthesis of fluorine-containing organic molecules that are typically inaccessible from other methods. These studies were focused on the difunctionalization of alkenes that was initiated by nucleopalladation to form the alkyl C-Pd(II) species in high exo/endo regioselectivity. In the presence of nucleophilic fluorine-containing reagents (e.g., AgF, TMSCF, and AgOCF) and strong oxidants (hypervalent iodine and electrophilic fluorinating reagents), the in situ generated fluorine-containing high-valent Pd(IV) intermediates undergo reductive elimination to provide the corresponding alkyl C-F, C-CF, and C-OCF bonds. Using these methods, we synthesized a variety of heterocycles containing fluorine, trifluoromethyl, and trifluoromethoxyl moieties from alkene substrates under mild reaction conditions. Besides hypervalent iodine reagents and electrophilic fluorinating reagents, our group has demonstrated that hydrogen peroxide, which is an environmentally friendly oxidant, can oxidize alkyl C-Pd(II) species to form high-valent alkyl C-Pd intermediates, and based on this observation, several catalytic difunctionalizations of alkenes, such as aminochlorination, aminoacetoxylation, and aminohydroxylation reactions, have been successfully developed. In addition, water was the only waste derived from the oxidant. All of these studies provide attractive methods for the stereoselective introduction of C-N and C-O bonds across double bonds via high-valent palladium intermediates. To gain a deeper understanding of this "high-valent palladium strategy", systematic mechanistic studies were performed to illustrate the stereochemistry of aminopalladation and reductive elimination. These results are summarized in the final section and serve as a guide for further exploration of novel alkene transformation as well as in other areas, such as Pd-catalyzed C-H bond functionalization reactions.
A novel palladium-catalyzed intramolecular oxidative aminofluorination of unactivated alkenes has been developed, in which AgF was used as a key fluorinating reagent and PhI(OPiv)(2) as oxidant. The reaction afforded vicinal fluoroamine products with very high regioselectivity. A Pd(II/IV) catalytic cycle was proposed, and preliminary mechanistic studies indicated that direct reductive elimination of Pd(IV) intermediates is favored, albeit competing with S(N)2 nucleophilic attack by fluorine, to form a C-F bond.
Palladium-catalyzed oxidative amination of unactivated alkyl olefins has been developed to produce linear (E)-allylimides with high regioselectivity. This highly efficient transformation of alkenes has been achieved by enhancing the reoxidation of palladium with the strong oxidant PhI(OPiv)(2). The present work also provides the first systematic analysis of the mechanism of the allylic C-H oxidative amination. It has been found that naphthoquinone (NQ) plays a vital role in promoting olefin coordination to the palladium catalyst: in the absence of NQ, the turnover-limiting step is olefin coordination to palladium catalyst; in the presence of NQ, the reaction involves a rapid equilibration to give a nitrogen-coordinated olefin-Pd(NQ) complex that undergoes turnover-limiting allylic C-H bond activation to generate a pi-allyl-Pd intermediate. This work provides valuable insights for further studies on the functionalization of unactivated olefins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.