During the startup and shutdown processes of a reversible-pump turbine (RPT) working in pump mode, abnormal sounds and vibrations usually occur in the distributor when the guide vanes (GVs) are at a slight opening (max opening of about 6%). The objective of this paper is to apply a three-dimensional numerical CFD method to study the unsteady flow behavior in the guide vane region of a pump turbine operating in pump mode. The dynamic meshing technique is introduced to simulate the startup and shutdown processes, and it is shown to be critical in accurately capturing the details of the flow pattern variations. In addition, the RNG k-epsilon two-equation turbulence model is applied and the governing equations are discretized with the finite volume method. Moreover, the boundary conditions are set through the calculation of the transient process of the power station. The results show that the main flow between the GVs is deflected during the startup and shutdown processes. In the shutdown process, the deflection occurs when the guide vane opening (GVO) is between 1.99 and 5.32 degrees, on average. In the startup process, the deflection occurs when the GVO is between 2.83 and 4.11 degrees, on average. In these processes, the velocity field and pressure field change dramatically. Simultaneously, the hydraulic torque (HT) on the GVs has a sharp change. The abrupt change in the HT leads to vibrations and abnormal sounds.
The pipe systems of hydropower plants are complex and feature special pipe types and various devices. When the Method of Characteristics (MOC) is used, interpolation or wave velocity adjustment is required, which may introduce calculation errors. The second-order Finite Volume Method (FVM) was presented to simulate water hammer and the load-rejection process of a hydropower plant with an air cushion surge chamber, which has rarely been considered before. First, the governing equations were discretized by FVM and the flux was calculated by a Riemann solver. A MINMOD slope limiter was introduced to avoid false oscillation caused by data reconstruction. The virtual boundary strategy was proposed to simply and effectively handle the complicated boundary problems between the pipe and the various devices, and to unify the internal pipeline and boundary calculations. FVM results were compared with MOC results, exact solutions, and measured values, and the sensitivity analysis was conducted. When the Courant number was equal to 1, the results of FVM and MOC were consistent with the exact solution. When the Courant number was less than 1, compared with MOC, the second-order FVM results were more accurate with less numerical dissipation. As the Courant number gradually decreased, the second-order FVM simulations were more stable. For the given numerical accuracy, second-order FVM had higher computational efficiency. The simulations of load rejection showed that compared with the MOC results, the second-order FVM calculations were closer to the measured values. For hydropower plants with complex pipe systems, wave velocity or the Courant number should be adjusted during MOC calculation, resulting in calculation error, and the error value is related to the parameters of the air cushion surge chamber (initial water depth, air cushion height, etc.). The second-order FVM can more accurately, stably, and efficiently simulate the load-rejection process of hydropower plants compared with MOC.
As the use of Darrieus turbines in water is becoming increasingly popular in the field of renewable energy, it is essential to explore and evaluate existing research efforts. The situation of the Darrieus water turbine in water still requires further discussion. This paper aims to provide a comprehensive review of optimization methods for Darrieus water turbines, addressing the challenges associated with their efficiency, start-up, and stability. This work summarizes and evaluates the findings of previous studies, focusing on the features of experimental and numerical methods. Influence of geometric parameters, including height-diameter ratio, solidity, torsional angle, and airfoil are also talked into. The existing research adopts solidity values ranging from 0.1 to 0.4, but the design experience is not as extensive as that of the Darrieus wind turbine. Further discussions are still needed on the optimal power coefficient and tip speed ratio of the Darrieus water turbine. The research with a power coefficient ranging from about zero to above the Betz limit needs further summarization. Various optimization strategies, such as multi-turbine arrangement, coupling with Savonius turbines, and blade pitching, are also discussed. By offering insights into the current state of optimization works for Darrieus water turbines, this review aims to facilitate future research, bridge existing gaps in the field, further enrich the utilization of ocean currents, and improve the structure of renewable energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.