Genome-wide association studies (GWAS) on colorectal cancer (CRC) have identified dozens of single nucleotide polymorphisms (SNPs) in more than 19 independent loci associated with CRC. Due to the heterogeneity of the studied subjects and the contrary results, it is challenging to verify the certainty of the association between these loci and CRC.We conducted a critical review of the published studies of SNPs associated with CRC. Five most frequently reported SNPs, which are rs6983267/8q24.21, rs4939827/18q21.1, rs10795668/10p14, rs4444235/14q22.2 and rs4779584/ 15q13.3, were selected for the current study from the qualified studies. Then meta-analyses based on larger sample sizes with average of 33,000 CRC cases and 34,000 controls were performed to assess the association between SNPs and CRC risk. Heterogeneity among studies and publication bias were assessed by the χ2-based Q statistic test Begg's funnel plot or Egger's test, respectively.Our meta-analysis confirmed significant associations of the five SNPs with CRC risk under different genetic models. Two risk variants at rs6983267 {Odds Ratio (OR) 1.388, 95% Confidence Interval (CI) 1.180-1.8633} and rs10795668 (OR 1.323, 95% CI 1.062-1.648) had the highest ORs in homogeneous model. While ORs of the other three variants at rs4939827 {OR 1.298, 95% CI 1.135-1.483}, rs4779584 (OR 1.261, 95% CI 1.146-1.386) and rs4444235 (OR 1.160, 95% CI 1.106-1.216) were also statistically significant. Sensitivity analyses and publication bias assessment indicated the robust stability and reliability of the results.
Breast cancer is the most commonly diagnosed malignancy in women. Several key genes and pathways have been proven to correlate with breast cancer pathology. This study sought to explore the differences in key transcription factors (TFs), transcriptional regulation networks and dysregulated pathways in different tissues in breast cancer. We employed 14 breast cancer datasets from NCBI-GEO and performed an integrated analysis in three different tissues including breast, blood and saliva. The results showed that there were eight genes (CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and NFIL3) down-regulated in breast tissue but up-regulated in blood tissue. Furthermore, we identified several unreported tissue-specific TFs that may contribute to breast cancer, including ATOH8, DMRT2, TBX15 and ZNF367. The dysregulation of these TFs damaged lipid metabolism, development, cell adhesion, proliferation, differentiation and metastasis processes. Among these pathways, the breast tissue showed the most serious impairment and the blood tissue showed a relatively moderate damage, whereas the saliva tissue was almost unaffected. This study could be helpful for future biomarker discovery, drug design, and therapeutic and predictive applications in breast cancers.
Whether berberine mediates its anti-inflammatory and blood sugar and lipid-lowering effects solely by adjusting the structure of the gut microbiota or by first directly regulating the expression of host pro-inflammatory proteins and activation of macrophages and subsequently acting on gut microbiota, is currently unclear. To clarify the mechanism of berberine-mediated regulation of metabolism, we constructed an obese mouse model using SPF-grade C57BL/6J male mice and conducted a systematic study of liver tissue pathology, inflammatory factor expression, and gut microbiota structure. We screened the gut microbiota targets of berberine and showed that the molecular mechanism of berberine-mediated treatment of metabolic syndrome involves the regulation of gut microbiota structure and the expression of inflammatory factors. Our results revealed that a high-fat diet (HFD) significantly changed mice gut microbiota, thereby probably increasing the level of toxins in the intestine, and triggered the host inflammatory response. The HFD also reduced the proportion of short-chain fatty acid (SCFA)-producing genes, thereby hindering mucosal immunity and cell nutrition, and increased the host inflammatory response and liver fat metabolism disorders. Further, berberine could improve the chronic HFD-induced inflammatory metabolic syndrome to some extent and effectively improved the metabolism of high-fat foods in mice, which correlated with the gut microbiota composition. Taken together, our study may improve our understanding of host-microbe interactions during the treatment of metabolic diseases and provide useful insights into the action mechanism of berberine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.