Recently, a novel internal cooling structure, namely multi-channel wall, has been put forward to enable higher overall cooling effectiveness with less coolant and pressure loss. Our previous work has proved the advantages of the design relative to conventional impingement cooling and swirl cooling. Channel impingement cooling structure, which is utilized at the turning region of the leading edge, is the critical factor to realize the high cooling performance of the design. Hence, the turning angle and turning internal radius of the cooling channel are two key parameters, and this paper focuses on the effects of these two parameters on the flow and heat transfer characteristics of the channel impingement cooling structure. Nine simplified single-channel models with different turning angles (45°, 60°, and 75°) and radiuses (0.6 mm, 0.9 mm, and 1.2 mm) were adopted to conduct the study, and the jet Reynolds number ranges from 10,000 to 40,000. The results show that the turning angle and turning internal radius affect the jet form significantly for the same mechanism. Small turning angle means large impingement, which leads to stream-wise counter-rotational vortices and high turbulence intensity, but increasing turning internal radius transfers the jet form from impingement jet to laminar layer attaching the target surface with low heat transfer. The turning internal radius has stronger effect than turning angle. With higher jet Reynolds number, both the heat transfer and total pressure loss increase dramatically, and the effects of geometrical parameters are clearer.
Leading edge multi-channel double wall design, a novel internal cooling structure, has been put forward recently to enable higher overall cooling effectiveness with less penalty of coolant mass flow and pressure loss. Our previous work has proved the advantages of the design under operating condition relative to conventional internal cooling methods including impingement cooling and swirl cooling. Channel impingement cooling structure, which is utilized at the turning region of the leading edge, is the critical factor to realize the high cooling performance of the design. Hence, the turning angle and turning internal radius of the cooling channel are two key parameters for the novel design, and this paper focuses on the effects of these two parameters on the flow and heat transfer characteristics of the channel impingement cooling structure. Nine simplified single-channel models with different turning angles (45°, 60°, and 75°) and radiuses (0.6 mm, 0.9 mm, and 1.2 mm) were adopted to conduct the study, and the jet Reynolds number ranges from 10,000 to 40,000. The results show that the turning angle and turning internal radius affect the jet form significantly for the same mechanism. Small turning angle means large impingement, which leads to stream-wise counter-rotational vortices and high turbulence intensity, but increasing turning internal radius transfers the jet form from impingement jet to laminar layer attaching the target surface with low heat transfer. The turning internal radius has stronger effect than turning angle. With higher jet Reynolds number, both the heat transfer and total pressure loss increase dramatically, and the effects of geometrical parameters are clearer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.