The effects of disconnected joints on the mechanical characteristics of rock masses are interesting and challenging aspects of rock mechanics. The prime objective of this study is to investigate the effect of joint orientations and joint connectivity rates on the strength, deformation, and failure mechanisms of rock specimens under unloading condition. To establish the relationships between different factors (confining pressure, joint orientation, and joint connectivity) and failure mechanisms, a series of triaxial unloading tests were performed. The results showed that the joint orientation had a more considerable effect than the joint connectivity on the strength and deformation of the specimens. Generally, three different types of failures were observed (i.e., shear, mixed, and split). Finally, Griffith’s theory was utilized to analyze the maximum tensile stress around the crack. The findings of this paper can also be used for practical engineering problems.
Faults or joints widely exist in rock masses, which deeply affect the mechanical properties of rock. The seismic frequency of the Gaoqiao fault and its surrounding areas in the Three Gorges Reservoir area before and after water storage is significantly higher than that in other areas. In this study, a curved joint is used to simulate the occurrence characteristics of the Gaoqiao fault, and the influence of reservoir water is simulated by adjusting the fracture water pressure. Compared with the changes of joint surface morphology parameters before and after the test, it is found that the macro failure characteristics of rock samples are in good agreement with the micromorphology changes of the joint surface. Among them, the parameters such as root-mean-square height (Sq), arithmetic mean height (Sa), reverse load area ratio (Smc), and minimum autocorrelation length (Sal) can better characterize the joint surface deterioration of rock samples under the action of fracture water pressure. The test results have a certain reference value for studying the fault response under the action of reservoir water.
As the groundwater environment changes in a goaf, the creep deformation of the backfill underwater pressure is worthy of attention. This paper takes the undercut goaf filling in the Yuzhou section of the middle route of the South-to-North Water Transfer Project as an example. Grading loading creep testing of the backfill under different water pressures was carried out using equipment developed by our research team. Based on the experimental results, the following key points were observed: (1) under the same axial stress, the creep strain and steady creep rate increase with increasing water pressure. Under the same water pressure, the creep strain and steady creep rate also increase with increasing axial stress. (2) The long-term strength of a backfill sample decreases with increasing water pressure and has a nonlinear relationship with water pressure. (3) The increase in water pressure exacerbates the damage of a backfill sample, which is manifested by the secondary crack propagation at the time of failure. Therefore, the increase in water pressure degrades the mechanical properties of the backfill to some extent. The results of this paper provide a reliable theoretical basis for the long-term stability analysis of goaf filling underwater pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.