The segregation of initially intermingled left and right eye inputs to the dorsal lateral geniculate nucleus (DLGN) during development is thought to be in response to precise spatial and temporal patterns of spontaneous ganglion cell activity. To test this hypothesis, we disrupted the correlated activity of neighboring ganglion cells in the developing ferret retina through immunotoxin depletion of starburst amacrine cells. Despite the absence of this type of correlated activity, left and right eye inputs segregated normally in the DLGN. By contrast, when all spontaneous activity was blocked, the projections from the two eyes remained intermingled. Thus, certain features of normal neural activity patterns are not required for the formation of eye-specific projections to the DLGN.
Senosory neurons manifest pronounced changes in excitability during maturation, but the factors contributing to this ubiquitous developmental phenomenon are not well understood. To assess the contribution of intrinsic membrane properties to such changes in excitability, in the present study whole cell patch-clamp recordings were made from developing ganglion cells in the intact retina of postnatal rats. During a relatively brief developmental period (postnatal days P7-P27) ganglion cells exhibited pronounced changes in the discharge patterns generated by depolarizing current injections. The youngest cells (P7-P17) typically responded to maintained depolarizations with only a single spike or a rapidly adapting discharge pattern. In contrast, the predominant response mode of more mature cells (P21-P27) was a series of repetitive discharges that lasted for the duration of the depolarization period, and by P25 all cells responded in this manner. These functional changes characterized all three morphologically defined cell classes identified by intracellular labeling with Lucifer yellow. To determine if expression of the potassium current (Ia) and the kinetics of the Na-channel related to the increased excitability of developing ganglion cells described above, current- and voltage-clamp recordings were made from individual neurons. The different firing patterns manifested by developing retinal ganglion cells did not reflect the presence or absence of the Ia conductance, although cells expressing Ia tended to generate spikes of shorter duration. With maturation the speed of recovery from inactivation of the Na current increased markedly and this related to the increased excitability of developing ganglion cells. Neurons yielding only a single spike to maintained depolarization were characterized by the slowest speed of recovery; cells with rapidly adapting discharges showed a faster recovery and those capable of repetitive firing recovered fastest from Na-channel inactivation. It is suggested that these changes in intrinsic membrane properties may relate to the different functional roles subserved by ganglion cells during development.
Human ASCs on an HA-derived scaffold may be used as a source of keratocytes to regenerate extracellular matrix-like material in situations where the cornea stroma has been compromised.
Epibatidine (EPI), a potent cholinergic agonist, disrupts acetylcholine-dependent spontaneous retinal activity. Early patch-clamp recordings in juvenile ferrets suggested that EPI blocks all retinal ganglion cell (RGC) action potentials when applied to the retina. In contrast, recent experiments on the developing mouse that relied on multielectrode array (MEA) recordings reported that EPI application decorrelates the activity of neighboring RGCs and eliminates retinal waves while preserving the spiking activity of many neurons. The different techniques used in previous studies raise the question of whether EPI has different effects on RGC activity in mouse compared with that in ferret. A resolution of this issue is essential for interpreting the results of developmental studies that relied on EPI to manipulate retinal activity. Our goal was to compare the effects of EPI on the spontaneous discharges of RGCs in mouse and ferret using 60-electrode MEA as well as patch-clamp recordings during the developmental stage when retinal waves are driven by acetylcholine in both species. We found that in both mouse and ferret EPI decorrelates RGC activity and eliminates retinal waves. However, EPI does not block all spontaneous activity in either species. Instead, our whole cell recordings reveal that EPI silences more than half of all RGCs while significantly increasing the activity of the remainder. These results have important implications for interpreting the results of previous studies that relied on this cholinergic agonist to perturb retinal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.