Cells employ signaling pathways to make decisions in response to changes in their immediate environment. Transforming growth factor beta (TGF-β) is an important growth factor that regulates many cellular functions in development and disease. Although the molecular mechanisms of TGF-β signaling have been well studied, our understanding of this pathway is limited by the lack of tools that allow the control of TGF-β signaling with high spatiotemporal resolution. Here, we developed an optogenetic system (optoTGFBRs) that enables the precise control of TGF-β signaling in time and space. Using the optoTGFBRs system, we show that TGF-β signaling can be selectively and sequentially activated in single cells through the modulation of the pattern of light stimulations. By simultaneously monitoring the subcellular localization of TGF-β receptor and Smad2 proteins, we characterized the dynamics of TGF-β signaling in response to different patterns of blue light stimulations. The spatial and temporal precision of light control will make the optoTGFBRs system as a powerful tool for quantitative analyses of TGF-β signaling at the single cell level.
Primary liver cancer (PLC) is one of the most common malignant tumours and has the third highest mortality rate worldwide. An active liver-targeting drug delivery system via the asialoglycoprotein receptors expressed in the hepatic parenchyma cells of mammals has become a research focus for the treatment of PLC. N-acetylaminogalactosyl-poly(lactide-co-glycolide)-succinyl-D-α-tocopherol polyethylene glycol 1000 succinate (GalNAc-PLGA-sTPGS) was synthesized to achieve active liver-targeting properties. Emodin (EMO)-loaded GalNAc-PLGA-sTPGS nanoparticles (EGPTN) were prepared with EMO which was selected for its potential antitumour efficacy. The in vitro cellular uptake, mechanism, cytotoxicity, and apoptosis of HepG2 cells were analyzed. The in vivo therapeutic effects of EGPTN were assessed in a PLC mouse model. The results showed that GalNAc-PLGA-sTPGS was successfully synthesized. The cellular uptake assay demonstrated that coumarin 6-loaded GalNAc-PLGA-sTPGS nanoparticles had superior active liver-targeting properties. The results of the cytotoxity and apoptosis studies indicated that EGPTN achieved the highest levels of cytotoxicity and cell apoptotic rate among the nanoparticles examined. Furthermore, EGPTN showed better in vivo therapeutic effects and anticancer efficacy in the PLC mice than did the other groups. Therefore, EGPTN enhanced the anticancer effect of EMO both in vitro and in vivo, making it a potential option for the treatment of PLC.
Summary Live cell imaging has been widely used to generate data for quantitative understanding of cellular dynamics. Various applications have been developed to perform automated imaging data analysis, which often requires tedious manual correction. It remains a challenge to develop an efficient curation method that can analyze massive imaging datasets with high accuracy. Here, we present eDetect, a fast error detection and correction tool that provides a powerful and convenient solution for the curation of live cell imaging analysis results. In eDetect, we propose a gating strategy to distinguish correct and incorrect image analysis results by visualizing image features based on principal component analysis. We demonstrate that this approach can substantially accelerate the data correction process and improve the accuracy of imaging data analysis. eDetect is well documented and designed to be user friendly for non-expert users. It is freely available at https://sites.google.com/view/edetect/ and https://github.com/Zi-Lab/eDetect .
Objective: To explore the efficacy comparison between epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR-TKIs) combined with traditional Chinese medicine (TCM) and single EGFR-TKIs for advanced non-small cell lung cancer (NSCLC).Methods: A total of 91 NSCLC patients with EGFR mutation were divided into an experimental group and a control group (in a ratio of 2:1) to receive TCM and EGFR-TKIs (61 cases) or single EGFR-TKIs (30 cases). Patients in the control group took EGFR-TKIs and those in the experimental group took EGFR-TKIs plus TCM. We analyzed the progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and treatment-related adverse events of two groups.Results: The mPFS of the experimental group and the control group was 12.3 and 8.9 months (P = 0.02), respectively, and the mOS of the experimental group and the control group was 28.2 and 24.2 months (P = 0.02), respectively. Subgroup analysis showed that for the patients with exon 19 deletion mutation (19DEL), mPFS between experimental group and control group was 12.7 and 10.1 months, respectively (P = 0.12). For exon 21 deletion mutation (L858R), the PFS of two groups was 10.8 vs. 8.2 months, respectively (P = 0.03). The subgroup analysis also showed that, for the patients with exon 19 deletion mutation, mOS between the experimental group and the control group was 30.3 and 28.7 months, respectively (P = 0.19). For exon 21 deletion mutation, the mOS of two groups was 25.5 vs. 21.3 months, respectively (P = 0.01). The DCR of the experimental group and the control group was 93.3% and 80.1%, respectively (P = 0.77). Grade 3–4 treatment-related adverse events were less common with the experimental group (11.48%) than the control group (26.67%).Conclusion: For NSCLC patients with EGFR mutation, EGFR-TKIs combined with TCM had a certain effect to prolong mPFS and mOS, compared with the use of EGFR-TKIs alone, especially for the patients with L858R. This conclusion has a significant effect on improving the survival of NSCLC patients after EGFR-TKIs resistance. It deserves further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.