A novel battery thermal management system (BTMS) based on water evaporation (WE) and air-cooling (AC) for a tube–shell Li-ion battery (LIB) pack is designed.
Abstract:One of the most commonly used methods of heat transfer enhancement is flow turbulization. This effect can be achieved, e.g., by placing special turbulizing elements into the channel. In this paper, the effects of ball turbulators (BTs) on the heat transfer and fluid friction characteristics in a circular tube are investigated through numerical simulation. The Reynolds number (Re) is in the range of 5000-35,000 under a condition of uniform heat-flux. BTs with different diameter ratios (e.g., 0.5, 0.75, and 1) and spacer lengths (40, 51.77, and 62.5 mm) are inserted in the circular tubes. The results show that the heat transfer rates in the tube equipped with BTs are around 1.26-2.01 times that of those in the plain tube. The BTs with a ball diameter ratio of one provide higher friction factors than 0.75 and 0.5 by about 34.6-46.2% and 51.1-63.4%, respectively. A smaller ball diameter ratio is more able to decrease the friction factor. The performance evaluation criterion (PEC) data indicate that the use of a smaller ball diameter ratio (BDR) and a smaller spacer length are preferred. The results also reveal that BTs with a larger diameter ratio and a smaller spacer length yield the highest heat transfer rate as well as the largest pressure loss. Compared with the plain tube, the fluid flow velocity near the tube wall is significantly improved when BTs are used at the same Reynolds number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.