Fluorinated carbon (CFx), a thriving member of the carbonaceous derivative, possesses various excellent properties of chemically stable, tunable bandgap, good thermal conductivity and stability, and super-hydrophobic due to its unique structures and polar C-F bonding. Herein, we present a brief review of the recent development of fluorinated carbon materials in terms of structures, properties and preparation techniques. Meanwhile, the applications in energy conversions and storage devices, biomedicines, gas sensors, electronic devices, and microwave absorption devices are also presented. The fluorinated carbon contains various types of C-F bonds including ionic, semi-ionic and covalent C-F, C-F2, C-F3 bonds with tunable F/C ratios. The controllable designing of C-F bonding and F/C ratios play a key role to optimize the properties of fluorinated carbon materials. Until now, the potential issues and future opportunities of fluorinated carbon are proposed. The present review will provide a direction for tuning C-F bonding and F/C ratios, developing a safe and efficient fluorination method and popularizing the applications of fluorinated carbon materials.
We analyze visual processing capabilities of a large-scale model for area V1 that arguably provides the most comprehensive accumulation of anatomical and neurophysiological data to date. We find that this brain-like neural network model can reproduce a number of characteristic visual processing capabilities of the brain, in particular the capability to solve diverse visual processing tasks, also on temporally dispersed visual information, with remarkable robustness to noise. This V1 model, whose architecture and neurons markedly differ from those of deep neural networks used in current artificial intelligence (AI), such as convolutional neural networks (CNNs), also reproduces a number of characteristic neural coding properties of the brain, which provides explanations for its superior noise robustness. Because visual processing is substantially more energy efficient in the brain compared with CNNs in AI, such brain-like neural networks are likely to have an impact on future technology: as blueprints for visual processing in more energy-efficient neuromorphic hardware.
Cortical populations produce complex spatiotemporal activity spontaneously without sensory inputs. However, the fundamental computational roles of such spontaneous activity remain unclear. Here, we propose a new neural computation mechanism for understanding how spontaneous activity is actively involved in cortical processing: Computing by Modulating Spontaneous Activity (CMSA). Using biophysically plausible circuit models, we demonstrate that spontaneous activity patterns with dynamical properties, as found in empirical observations, are modulated or redistributed by external stimuli to give rise to neural responses. We find that this CMSA mechanism of generating neural responses provides profound computational advantages, such as actively speeding up cortical processing. We further reveal that the CMSA mechanism provides a unifying explanation for many experimental findings at both the single-neuron and circuit levels, and that CMSA in response to natural stimuli such as face images is the underlying neurophysiological mechanism of perceptual “bubbles” as found in psychophysical studies.
Recent evidence has demonstrated that during visual spatial attention sampling, neural activity and behavioral performance exhibit large fluctuations. To understand the origin of these fluctuations and their functional role, here, we introduce a mechanism based on the dynamical activity pattern (attention spotlight) emerging from neural circuit models in the transition regime between different dynamical states. This attention activity pattern with rich spatiotemporal dynamics flexibly samples from different stimulus locations, explaining many key aspects of temporal fluctuations such as variable theta oscillations of visual spatial attention. Moreover, the mechanism expands our understanding of how visual attention exploits spatially complex fluctuations characterized by superdiffusive motion in space and makes experimentally testable predictions. We further illustrate that attention sampling based on such spatiotemporal fluctuations provides profound functional advantages such as adaptive switching between exploitation and exploration activities and is particularly efficient at sampling natural scenes with multiple salient objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.