Recurrent spontaneous abortion (RSA) is a relevant complication of pregnancy. Aberrant dendritic cell (DC) activities and differentiation have been identified to be involved in RSA, but the underlying mechanisms remain unclear. Baicalin from Radix Scutellariae possesses a wide range of pharmacological and biological activities. However, the effect of baicalin on DC function in RSA has not been investigated. Here, we analyzed the changes of peripheral and maternal-fetal interface DC subsets and function in patients and mice with RSA, respectively. Then, we further treated RSA mice with baicalin and analyzed the therapeutic effect and underlying mechanism. We found that DCs from the peripheral blood and decidua of RSA patients and the maternal-fetal of RSA mice were all polarized to conventional DCs, whose proportion was positively correlated with the mice embryo absorption rate. Moreover, DCs from RSA patients and mice showed increased expression of HLA-DR/MHC-II, CD80, and CD86 but decreased expression of CD274 and 33D1. Importantly, baicalin could alleviate embryo resorption of RSA mice by reversing conventional DCs to plasmacytoid DCs and functional molecule expression via inhibiting the STAT5-ID2 pathway. Our research further proved that DCs play an important role in the pathogenesis of RSA and baicalin might be used for treating RSA.
Recurrent spontaneous abortion (RSA) is a common complication of early pregnancy. Dendritic cells (DCs) are thought to confer fetal-maternal immunotolerance and play a crucial role in ensuring a successful pregnancy. A decrease of plasmacytoid dendritic cells (pDCs) was found to be involved in RSA, but the underlying mechanisms of decreased pDC in RSA remain unclear. MicroRNAs (miRNAs) play critical roles in RSA as well as the development, differentiation and functional regulation of pDCs; however, the regulatory effect of miRNAs on pDC in RSA has not been fully investigated. Here we demonstrated that both the proportion of pDC and signal transducer and activator of transcription (STAT3)/transcription factor 4 (Tcf4/E2-2) expression decreased in the peripheral blood mononuclear cells and decidua of patients with RSA compared to those with normal pregnancy (NP), and there was a significantly positive correlation between pDC and STAT3 mRNA. MiRNA microarray assay and quantitative reverse transcription PCR results showed that miR-6875-5p expression was markedly increased in women with RSA and negatively correlated with mRNA expression level of STAT3. Up-regulated miR-6875-5p could sensitively discriminate patients with RSA from NP subjects. Overexpression of miR-6875-5p significantly down-regulated the mRNA expression of STAT3 and E2-2 as well as the protein and phosphorylation level of STAT3, while miR-6875-5p knockdown showed opposite results. Dual luciferase reporter verified that miR-6875-5p regulated STAT3 expression by directly binding to its 3'untranslated region. Overall, our results suggested that increased miR-6875-5p is involved in RSA by decreasing the differentiation of pDCs via inhibition of the STAT3/E2-2 signaling pathway. miR-6875-5p may be explored as a promising diagnostic marker and therapeutic target for RSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.