Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.
Flexible electronics is an emerging and promising technology for next generation of optoelectronic devices. Herein, hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity of 1300-1400 mAh g(-1) and excellent cycling ability even after 160 cycles with a capacity of 1200 mAh g(-1). Highly flexible full batteries were also fabricated, exhibiting high flexibility, excellent electrical stability, and superior electrochemical performances.
In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.
We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.