A flexible quasi-solid-state Ni-Zn battery is developed by using tiny ZnO nanoparticles and porous ultrathin NiO nanoflakes conformally deposited on hierar chical carbon-cloth-carbon-fiber (CC-CF) as the anode (CC-CF@ZnO) and cathode (CC-CF@NiO), respectively. The device is able to deliver high performance (absence of Zn dendrite), superior to previous reports on aqueous Ni-Zn batteries and other flexible electrochemical energy-storage devices.
Rice false smut has become an increasingly serious fungal disease in rice (Oryza sativa L.) production worldwide. Ustilaginoidins are bis-naphtho-γ-pyrone mycotoxins previously isolated from the rice false smut balls (FSBs) infected by the pathogen Villosiclava virens in rice spikelets on panicles. To investigate the main ustilaginoidins and their distribution in rice FSBs, five main bis-naphtho-γ-pyrones, namely ustilaginoidins A (1), G (2), B (3), I (4) and C (5), were isolated and identified by NMR and high-resolution mass spectrometry as well as by comparison with the data in the literature. The rice FSBs at early, middle and late maturity stages were divided into their different parts and the contents of five main ustilaginoidins for each part were determined by HPLC analysis. The results revealed that the highest levels of ustilaginoidins were in late stage rice FSBs, followed by those at middle stage. Most ustilaginoidins, 96.4% of the total quantity, were distributed in the middle layer at early stage. However, ustilaginoidins were mainly distributed in the outer and middle layers at middle and late stages. Small amounts of ustilaginoidins A (1) and G (2) were found in the inner part of rice FSBs at each maturity stage. The contents of ustilaginoidins A (1) and G (2) without hydroxymethyl groups at C-2 and C-2’ of the γ-pyrone rings in rice FSBs were relatively high at early stage, while the contents of ustilaginoidins B (3), I (4), and C (5) with hydroxymethyl groups at C-2 or C-2’ were relatively high at late stage.
The production of ammonia from nitrogen reduction reaction (NRR) under mild conditions is one of the most challenging issues in modern chemistry. The linear scaling relationship between the adsorption energies of −N 2 H and −NH 2 on a single active site is a well-established bottleneck. By investigating a series of densely monodispersed Mo−N−C sites embedded in graphene using first-principles calculations, we found that previously underappreciated neighboring effects between adjacent active sites may help break the limit: they not only improve the energetics of potential determining steps of NRR but also promote an alternative associative mechanism based on a cooperative bridge-on adsorption of N 2 by two Mo−N−C sites of ∼6 Å apart. Further, a barrier of 0.71 eV for N−N bond dissociation is achieved by proper ratio of coordinated C/N atoms of Mo. Our work suggests the cooperation of two adjacent active sites may offer an alternative strategy of nitrogen fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.