Nucleotide exchange factor (GrpE), a highly conserved antigen, is rapidly expressed and upregulated when Ureaplasma urealyticum infects a host, which could act as a candidative vaccine if it can induce an anti-U. urealyticum immune reaction. Here, we evaluated the vaccine potential of recombinant GrpE protein adjuvanted by Freund's adjuvant (FA), to protect against U. urealyticum genital tract infection in a mouse model. After booster immunization in mice with FA, the GrpE can induced both humoral and cellular immune response after intramuscular injection into BALB/c mice. A strong humoral immune response was detected in the GrpE-immunized mice characterized by production of high titers of antigen-specific serum IgG (IgG1, IgG2a, and IgG3) antibodies. At the same time, the GrpE also induced a Th1-biased cytokine spectrum with high levels of IFN-γ and TNF-α after re-stimulation with immunogen GrpE in vitro, suggesting that GrpE could trigger the Th1 response when used for vaccination in the presence of FA. Although GrpE vaccination in the presence of a Th1-type adjuvant-induced had readily detectable Th1 responses, there wasn't increase inflammation in response to the infection. More importantly, the robust immune responses in mice after immunization with GrpE showed a significantly reduced U. urealyticum burden in cervical tissues. Histopathological analysis confirmed that tissues of GrpE-immunized BALB/c mice were protected against the pathological effects of U. urealyticum infection. In conclusion, this study preliminarily reveals GrpE protein as a promising new candidate vaccine for preventing U. urealyticum reproductive tract infection.
The Chlamydia pneumoniae genome-encoded open reading frames Cpn0146, Cpn0147, and Cpn0308 were expressed as recombinant proteins for detecting C. pneumoniae-specific antibodies in samples from three groups of individuals including 183 with C. pneumoniae-associated respiratory infection (group I), 60 healthy blood donors (group II), and 32 with no known respiratory infection (group III). The recombinant Cpn0146 was recognized by 71 (38.8% positive recognition rate), 15 (25%) and 1 (3.1%), Cpn0147 by 75 (40.9%), 14 (23.3%), and 2 (6.3%), and Cpn0308 by 82 (44.8%), 16 (26.7%), and 0 (0%) samples from groups I, II, and III, respectively. The positive recognition rates with any of the three antigens were significantly higher in group I than those in groups II and III, suggesting that more individuals from group I were likely infected with C. pneumoniae. This conclusion was confirmed with a commercially available whole organism-based ELISA kit (Savyon Diagnostics Ltd., Ashdod, Israel), which detected C. pneumoniae antibodies in 98 (64.1%), 26 (43.3%), and 4 (12.5%) samples from group I, II, and III, respectively. Comparing to the commercial kit, the recombinant antigen-based detection assays displayed >97% of detection specificity and >87% of sensitivity, suggesting that these recombinant antigens can be considered alternative tools for aiding in serodiagnosis of C. pneumoniae infection.
HBV and HDV infections shared similar patterns by IDUs and the general populations, and HCV infection exhibited distinct features between two populations. Our results suggest different molecular epidemiologic characteristics of HBV, HCV, and HDV infection in two populations.
BackgroundUreaplasma urealyticum is a major pathogen associated with many diseases. The ability of U. urealyticum to protect itself from oxidative stress is likely to be important for its pathogenesis and survival, but its oxidative stress tolerance mechanisms remain unclear. This study investigates the antioxidant activity of a ferritin-like protein from U. urealyticum.ResultsThe uuferritin gene, which was up regulated when U. urealyticum was subjected to oxidative stress, was cloned from U. urealyticum and the corresponding recombinant protein uuferritin was purified. Uuferritin protein reduced the levels of hydroxyl radicals generated by the Fenton reaction as a consequence of its ferroxidase activity, and thus the protein protected DNA from oxidative damage. Furthermore, oxidation-sensitive Escherichia coli mutants transformed with pTrc99a-uuferritin showed significantly improved tolerance to oxidative stress compared to E. coli mutants transformed with an empty pTrc99a vector.ConclusionsThe present work shows that uuferritin protein confers resistance to oxidative stress in vitro and in E. coli. The protective role of uuferritin provides a foundation for understanding the mechanisms of oxidative stress tolerance in U. urealyticum.
Ureaplasma urealyticum ( U. urealyticum , Uu) is a common sexually transmitted pathogen that is responsible for diseases such as non-gonococcal urethritis, chorioamnionitis, and neonatal respiratory diseases. The rapid emergence of multidrug-resistant bacteria threatens the effective treatment of Uu infections. Considering this, vaccination could be an efficacious medical intervention to prevent Uu infection and disease. As a highly conserved molecular chaperone, DnaJ is expressed and upregulated by pathogens soon after infection. Here, we assessed the vaccine potential of recombinant Uu-DnaJ in a mouse model and dendritic cells. Results showed that intramuscular administration of DnaJ induced robust humoral- and T helper (Th) 1 cell-mediated immune responses and protected against genital tract infection, inflammation, and the pathologic sequelae after Uu infection. Importantly, the DnaJ protein also induced the maturation of mouse bone marrow–derived dendritic cells (BMDCs), ultimately promoting naïve T cell differentiation toward the Th1 phenotype. In addition, adoptive immunization of DnaJ-pulsed BMDCs elicited antigen-specific Immunoglobulin G2 (IgG2) antibodies as well as a Th1-biased cellular response in mice. These results support DnaJ as a promising vaccine candidate to control Uu infections. Key points • A novel recombinant vaccine was constructed against U. urealyticum infection. • Antigen-specific humoral and cellular immune responses after DnaJ vaccination. • Dendritic cells are activated by Uu-DnaJ, which results in a Th1-biased immune response. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12230-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.