The rare isotope 236U has a half-life of 2.342(3) × 107 years, and is produced principally by thermal neutron capture on 235U. The isotopic atom ratio of 236U/238U depends on the integral thermal neutron flux received by the material of interest. 236U is potentially useful as a “fingerprint" for indicating the presence of neutron-irradiated uranium usually originating from nuclear activity. By extracting negative molecular ion UO− from the uranium oxide target, simulating the 236U16O− beam transport with 238U16O− and 208Pb216O− pilot molecular ion beam, transporting the 236U-containing ion beam with a high resolution injection magnet analyzer and electrostatic analyzer system, and finally identifying and detecting 236U with a time-of-flight detector (TOF), a method for AMS (Accelerator Mass Spectrometry) measurement of 236U was established on the HI-13 Accelerator AMS system at China Institute of Atomic Energy.
By using HPGe γ-ray spectrometry, the activity of the long-lived fission product 126Sn in a SnOB2 sample was measured. The number of 126Sn atoms and the ratio of 126Sn to Sn were calculated based on the half-life value of 2.35×105a and the chemical stoichiometry. The result of the ratio of 126Sn to Sn, (1.033±0.037)×10−8, is consistent with the results measured by the accelerator mass spectrometry (AMS) within uncertainty limits, which confirms our procedures in the measurement of 126Sn by AMS and lays a foundation for the AMS measurement of 126Sn at much lower levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.