The NMR-structures of six polyphenols, resveratrol (1), (-)-epicatechin (2), pelargonidin chloride (3), cyanidin chloride (4), cyanin chloride (5), and keracyanin chloride (6), were fully assigned. For the glycosylated polyphenols 5 and 6, the three-dimensional solution structure and long-range 1 H-13 C-coupling constants across the glycosidic bond were measured. Satisfactory fit to standard Karplus-equations was achieved for glycosides directly attached to the aromatic core in cyanin chloride. Molecular dynamics simulation data in vacuum at the AM1-level of theory were shown to approximate the NMR-solution data reasonably well. Selective HCl-catalyzed H/D-exchange was observed for aromatic protons H6 and H8 in flavonoid structures containing a 5,7-metadisubstituted chromelynium core with free OH-groups. The exchange took place readily in compounds 3, 4, and 6, whereas 1, 2, and 5 did not exchange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.