Optimal feature subset selection is an important and a difficult task for pattern classification, data mining, and machine intelligence applications. The objective of the feature subset selection is to eliminate the irrelevant and noisy feature in order to select optimum feature subsets and increase accuracy. The large number of features in a dataset increases the computational complexity thus leading to performance degradation. In this paper, to overcome this problem, angle modulation technique is used to reduce feature subset selection problem to four-dimensional continuous optimization problem instead of presenting the problem as a high-dimensional bit vector. To present the effectiveness of the problem presentation with angle modulation and to determine the efficiency of the proposed method, six variants of Artificial Bee Colony (ABC) algorithms employ angle modulation for feature selection. Experimental results on six high-dimensional datasets show that Angle Modulated ABC algorithms improved the classification accuracy with fewer feature subsets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.