This review is focused on the virulent traits of lipolytic enzymes from bacteria with special emphasis on Mycobacterium tuberculosis. In vivo, triacylglycerols in the form of inclusion bodies are present in tubercle bacilli in the lungs. This pathogenic bacterium possesses a lipase gene (Lip) family, which is expressed and differentially regulated under a variety of in vitro conditions. Not much research work has been carried out on these lipolytic enzymes. A better understanding of lipolytic enzymes in mycobacteria would lead to develop new strategies for tuberculosis treatment. The present review highlights the recent work done in the field of mycobacterium lipolytic enzymes and their involvement in the virulence and pathogenicity.
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity.
The Rv3203 (LipV) of Mycobacterium tuberculosis (Mtb) H37Rv, is annotated as a member of Lip family based on the presence of characteristic consensus esterase motif ‘GXSXG’. In vitro culture studies of Mtb H37Ra indicated that expression of Rv3203 gene was up-regulated during acidic stress as compared to normal whereas no expression was observed under nutrient and oxidative stress conditions. Therefore, detailed characterization of Rv3203 was done by gene cloning and its further expression and purification as his-tagged protein in microbial expression system. The enzyme was purified to homogeneity by affinity chromatography. It demonstrated broad substrate specificity and preferentially hydrolyzed p-nitrophenyl myristate. The purified enzyme demonstrated an optimum activity at pH 8.0 and temperature 50 °C. The specific activity, K m and V max of enzyme was determined to be 21.29 U mg(-1) protein, 714.28 μM and 62.5 μmol ml(-1) min(-1), respectively. The pH stability assay and circular dichroism spectroscopic analysis revealed that Rv3203 protein is more stable in acidic condition. Tetrahydrolipstatin, a specific lipase inhibitor and RHC80267, a diacylglycerol lipase inhibitor abolished the activity of this enzyme. The catalytic triad residues were determined to be Ser50, Asp180 and His203 residues by site-directed mutagenesis.
The Mycobacterium tuberculosis has developed intricate strategies to evade the killing of microorganism and support its survival in phagocytes. The genome sequence of bacterium revealed the presence of several genes for lypolytic enzymes. Rv1923 gene, a member of Lip family in M. tuberculosis demonstrated the least sequence similarity with its counterpart in non-pathogenic strain M. smegmatis. The expression of Rv1923 gene (LipD) was not observed in in vitro growing cultures of M. tuberculosis H37Ra while an upregulation of transcription of Rv1923 gene was noticed in oxidative conditions. For detailed characterization of LipD enzyme the Rv1923 gene was cloned in pQE30-UA vector and expressed in E. coli M15 cells. LipD was purified from inclusion bodies and refolded with nearly 40 % protein yield. The specific activity of enzyme was calculated to be 16 U/mg with pNP-palmitate as a preferred substrate. Kinetic analysis showed K(m) 0.645 mM and V(max) 24.75 U/ml with pNP-palmitate. Ser-102, Asp-342, and His-369, predicted as the members of the catalytic triad, were confirmed by mutagenesis. Mutagenesis studies revealed that catalytic serine residues located in β-lactamase motifs (S-X-X-K) were responsible for lipolytic activity. Secondary structure analysis by CD spectroscopy demonstrated the presence of α helices and β sheets in the canonical structure of LipD. The enzyme was stable up to 50 °C and was active even at pH 6.0. The expression of enzyme under stress conditions and its activity and stability at high temperature and low pH suggested the possible role of LipD in the survival of mycobacterium in macrophage compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.