To propose and implement an automated machine learning (ML) based methodology to predict the overall survival of glioblastoma multiforme (GBM) patients. In the proposed methodology, we used deep learning (DL) based 3D U‐shaped Convolutional Neural Network inspired encoder‐decoder architecture to segment the brain tumor. Further, feature extraction was performed on these segmented and raw magnetic resonance imaging (MRI) scans using a pre‐trained 2D residual neural network. The dimension‐reduced principal components were integrated with clinical data and the handcrafted features of tumor subregions to compare the performance of regression‐based automated ML techniques. Through the proposed methodology, we achieved the mean squared error (MSE) of 87 067.328, median squared error of 30 915.66, and a SpearmanR correlation of 0.326 for survival prediction (SP) with the validation set of Multimodal Brain Tumor Segmentation 2020 dataset. These results made the MSE far better than the existing automated techniques for the same patients. Automated SP of GBM patients is a crucial topic with its relevance in clinical use. The results proved that DL‐based feature extraction using 2D pre‐trained networks is better than many heavily trained 3D and 2D prediction models from scratch. The ensembled approach has produced better results than single models. The most crucial feature affecting GBM patients' survival is the patient's age, as per the feature importance plots presented in this work. The most critical MRI modality for SP of GBM patients is the T2 fluid attenuated inversion recovery, as evident from the feature importance plots.
Objective Glioblastoma multiforme (GBM) is a grade IV brain tumour with very low life expectancy. Physicians and oncologists urgently require automated techniques in clinics for brain tumour segmentation (BTS) and survival prediction (SP) of GBM patients to perform precise surgery followed by chemotherapy treatment. Methods This study aims at examining the recent methodologies developed using automated learning and radiomics to automate the process of SP. Automated techniques use pre-operative raw magnetic resonance imaging (MRI) scans and clinical data related to GBM patients. All SP methods submitted for the multimodal brain tumour segmentation (BraTS) challenge are examined to extract the generic workflow for SP.
ResultsThe maximum accuracies achieved by 21 state-of-the-art different SP techniques reviewed in this study are 65.5 and 61.7% using the validation and testing subsets of the BraTS dataset, respectively. The comparisons based on segmentation architectures, SP models, training parameters and hardware configurations have been made.
ConclusionThe limited accuracies achieved in the literature led us to review the various automated methodologies and evaluation metrics to find out the research gaps and other findings related to the survival prognosis of GBM patients so that these accuracies can be improved in future. Finally, the paper provides the most promising future research directions to improve the performance of automated SP techniques and increase their clinical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.